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Abstract 

Changing customer demands lead to increasing product varieties and decreasing delivery times, which in 
turn pose great challenges for production companies. Combined with high market volatility, they lead to 
increasingly complex and diverse production processes. Thus, the susceptibility to disruptions in 
manufacturing rises, turning the task of Production Planning and Control (PPC) into a complex, dynamic 
and multidimensional problem. Addressing PPC challenges such as disruption management in an efficient 
and timely manner requires a high level of manual human intervention. In times of digitization and Industry 
4.0, companies strive to find ways to guide their workers in this process of disruption management or 
automate it to eliminate human intervention altogether. This paper presents one possible application of 
Machine Learning (ML) in disruption management on a real-life use case in mixed model continuous 
production, specifically in the final assembly. The aim is to ensure high-quality online decision support for 
PPC tasks. This paper will therefore discuss the use of ML to anticipate production disruptions, solutions to 
efficiently highlight and convey the relevant information, as well as the generation of possible reaction 
strategies. Additionally, the necessary preparatory work and fundamentals are covered in the discussion, 
providing guidelines for production companies towards consistent and efficient disruption management. 
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1. Introduction 

“Anything that can possibly go wrong, does”, is the so-called Murphy´s law. This means, that unwanted 
events are unavoidable and something is bound to go wrong at some point in time. These unwanted events, 
also called disruptions, have a negative impact on the productivity and, therefore, profitability of a 
production company [1,2]. 

In times of shrinking product lifecycles, delivery times and increasing market volatility, production 
companies are more prone to disruptions [3]. Decreasing product life cycles and growing customisability 
lead to more frequent process changes, which has a direct effect on the possibility of disruptions [4]. 
Adequate disruption management will help avoid stagnating or even decreasing productivity levels in the 
production processes in the future. 

Efficient disruption management in modern production is a multidimensional problem. It requires perceiving 
the possible challenge, understanding it and generating a suitable, possibly novel, solution. Perception, 
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cognition and action are the three main abilities that define intelligence in general [5]. Within the context of 
disruption management, perception means creating a full picture of the current production state, based on 
the available information. Often, available information is incomplete because of time pressure and lack of 
knowledge or data [6]. Cognition is related to the current production status analysis, recognition of occurred 
and anticipated disruptions, as well as the assessment of their probable impact and severity. Action in the 
context of disruption management refers to the execution of a number of activities aimed at the prevention 
or minimisation of negative consequences. Humans, as intelligent beings, possess natural abilities in 
perception, cognition and action execution and traditionally constitute the main driving force behind 
disruption management. However, modern production imposes new challenges beyond human capabilities. 
Production managers are incapable of managing the growing flow of information and often have to make 
decisions based only on a fraction of available information, which can lead to a suboptimal decision. A 
logical way to deal with the growing complexity of disruption management is the involvement of larger 
human teams. Nevertheless, within a team, every member has to digest the relevant information and decide 
upon required actions, based mostly on their personal experience and judgement. A substantial time 
investment is required to form a well-coordinated team with clear communication and the required levels of 
domain experience to make sound decisions, keeping the company’s best practices in mind. Nowadays, 
achieving such a goal is greatly impeded by factors such as an ageing workforce, increasing staff turnover 
and constantly changing production environments. However, recent advances in Machine Learning (ML) 
provide an indication that Artificial Intelligence capable of tackling complex problems will soon be a reality 
[7]. This can be of great help for experts while dealing with production disruptions. 

We believe that in the age of Digitization, Industry 4.0 and ML, humans will still be heavily involved in the 
decision-making process. However, it will consist of a hybrid workflow where part of the task will shift from 
a mainly manual effort to a semi-automatic or even completely autonomous approach. Smart experts and 
assistance systems will support the worker in making the right decisions by providing the relevant 
information at the perception stage, guiding the decision-making process or automating certain decisions at 
the cognition step and facilitating chosen actions to execute at the action stage.  

In order to develop useful systems for this application area, several aspects have to be considered. In the 
perception stage, it is important to select, consolidate and transform relevant information from multiple 
sources to a form easily comprehensible by human experts. At this stage, ML can augment human 
intelligence with speed, consistency and precision in processing big amounts of data. Beneficial patterns in 
the data can be recognised that are invisible to the human eye [8]. At the cognition stage of disruption 
management, past and future disruptions need to be considered and evaluated. Disruptions should be 
classified based on their estimated negative impact. Possible mitigations, also known as reaction strategies, 
need to be matched to the various disruptions. Addressing different tasks at the cognition stage often requires 
intuitive capabilities, the ability to come up with the non-standard solutions as well as conducting complex 
planning. People are notably competent in this range of tasks. Nevertheless, people can still rely on ML for 
generation of data-driven predictions concerning the disruption risks and their severity. Additionally, human 
experts can be presented with recommendations to viable actions, based on similar events in the past or with 
the help of rule-based expert systems. 

In the next chapters, we give an overview of the state of the art for both classical and ML-related approaches 
in the field of disruption management. Subsequently, our approach is presented, together with some related 
requirements and practical results based on a real use case. Finally, the conclusion and outlook finalises the 
paper. 
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2. State of the art 

For the present topic, two research fields are of interest in the state of the art. Firstly, it is worthwhile to 
investigate the state of the art in disruption management to define its research deficits. Secondly, since 
disruption management is part of Production Planning and Control, the state of the art of ML in PPC is of 
interest.  

2.1 Disruption Management 

Disruptions are critical events that lead to a break in the workflow of a production process, such as machine 
failure, rework or missing personnel. Therefore, disruptions have a negative impact on the production system 
due to their substantial influence on logistical targets.  

The management of disruptions as a research field already exists since the 1970s [9]. Disruption management 
refers to the structural and procedural organisation of all successive measures, including the elimination of 
disruptions, the minimisation of the consequences of disruptions and the prevention of disruptions. These 
three temporal organisational units are also referred to as short-, medium- and long-term disruption 
management [10]. In disruption management, a distinction is made between different strategies. Prevention 
strategies deal either with the elimination of the cause (causal strategy) or with the defence against the 
occurrence (defence strategy), i.e. with the avoidance of the occurrence of disruptions. Reaction strategies 
have two categories, namely system-oriented strategies that deal with the consequences of disruption, and 
reactive strategies, that adapts to the new situation resulting from the disruption. Thus, they react to 
disruptions that have already occurred [11]. 

While the first approaches in disruption management mainly dealt with the disruptions themselves and their 
classification [12,10], approaches in recent years focus more on data aspects and simulation [13–16]. 
However, especially the aspects of possible reaction strategies and the use of ML in disruption management 
have not yet shown satisfying results.  

2.2 Machine Learning in production 

Machine Learning (ML) is a subset of Artificial Intelligence (AI) and is capable of discovering underlying 
patterns and dependencies through examination of data [17]. ML is used across many domains of production, 
but is mainly used within scheduling, process planning and control [18]. In this chapter, we will cover only 
applications potentially related to disruption management.  

One of the topics gaining attention in the research community is the use of Deep Reinforcement Learning 
(RL) for solving combinatorial optimisation tasks, such as scheduling [19–21]. This research direction in 
ML is a potentially good solution for conducting production resequencing in a flexible manner, as a response 
to production disruptions. Compared to classical Operations Research (OR) approaches, deep RL methods 
can potentially adapt to changing environments and boundary conditions by retraining without having to 
redesign the whole solution approach. However, deep RL methods are new. Several questions, such as 
explainability, validation methods, generalisation capabilities and robustness still need to be addressed 
before it can be deployed in real production environments [22]. 

Besides deep RL, unsupervised learning is another subset of ML that does not require collected data to be 
labelled. There are many scientific works based on unsupervised learning that elaborate on the use of 
clustering algorithms for automatic detection of similar products, classification of products in product 
families and anticipating product failures [23–25]. 

Another promising field is the use of Visual Analytics (VA) in production planning and scheduling. Different 
works propose the use of various data transformation and visualising techniques to automatically provide 
experts with decision-relevant information and interactively evaluate possible production scenarios [26–28].  
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In our opinion, the use of ML and VA approaches on the order level has not yet been discussed sufficiently 
in the context of disruption management. 

3. Approach 

The overall goal is to combine a number of ML and VA approaches to enable a data-driven prediction of 
production disruptions.  Therefore, we introduce a practical use case with real production data used to 
develop and validate our approach.   

3.1 Use Case Introduction 

We choose a mixed model continuous assembly line producing self-checkout machines for retail to develop 
and test our disruption management methodology. This is motivated by the complexity of the final product. 
Many modules of the system, from hardware to software, are customisable to the customer needs. It leads to 
a vast amount of different products being produced on one line. Often, specific product configurations are 
produced only a few times, making erroneous planning estimations and disruptions along the assembly 
process more likely. Products go through a number of stations on a production line with a pre-defined cycle 
time. Production disruptions of any kind have to be addressed within the short period of time the product 
stays on a given working station. Otherwise, the assembly sequence cannot be completed and the product 
will have to be finished separately in the rework area. This requires additional personnel capacities, causes 
longer production times, higher costs and is limited to a number of products at any given time because of the 
rework area space and human labour constraints. Possible disruptions, if accounted for at the planning and 
order release stage, can be mitigated. Therefore, it is important to timely recognise and foresee disruptions.  

3.2 Data 

One of the most frequently used IT-systems by production companies are Enterprise Resource Planning 
(ERP) systems [29]. An ERP system facilitates the order processing from supplier to customer, e.g. with 
production planning and materials management. It leads to a certain degree of homogenisation of available 
data across companies. Planning data, such as the Bill of Materials (BOM) and production steps, is available 
for every produced order. The planning data is augmented with historical data, including disruptions in 
production steps, conducted rework and schedule adherence. This data is not available in every ERP system 
but is a crucial part in anticipating possible process disruptions [30]. The more information on circumstances, 
causes and impact of previous process disruptions we have, the more precise we can estimate future 
disruptions. 

3.3 Explorative Data Analysis and General Concept  

Similar orders consist of similar materials and require 
similar steps in the assembly process. Potentially these 
orders can inherit the same design flaws that make the 
assembly process prone to errors. Once clusters of 
similar orders have been identified, it is useful to know 
how likely each of these clusters are to be finished on 
time without disruptions or to be moved to the rework 
area. Originally, for the given use case, the product 
similarity is defined by four main product families that 
share common functional and design features. To 
investigate underlying structures in these product 
groups we use the unsupervised ML method of 
hierarchical clustering [31]. The features used to create 

Figure 1: Four main product families represented as
hierarchical clusters indicates a great amount of
configuration and assembly variations 
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such a clustering is a combination of the materials the orders consist of and the production process steps to 
assemble the order. An agglomerative hierarchical clustering of the data is performed with complete linkage. 
Figure 1 shows the dendrogram, which is a tree-like structure, representing the results of the hierarchical 
clustering. This type of representation is integral to understanding how the clustering is performed. The 
bottom of the dendrogram represents each of the individual orders that have been produced in the past. 
Moving further up the tree, similar products and product clusters are linked together in larger clusters. The 
closer to the top the linkage occurs, the lower the degree of similarity within the cluster. At the top of the 
dendrogram we can recognise four horizontal lines depicting four main product families. The fact that each 
product family has a complex tree structure demonstrates the high level of variation in the production 
process. This variation is the result of high customisation possibilities for each product. Therefore, in order 
to approximate possible behaviours of an order based on similar orders from the past, we need to split given 
product families in smaller groups with higher similarity first. 

Clustering helps with determining which production orders are similar, but we are interested in more than 
similarity. We would like to abstract this to the behaviour of the orders and would like to determine which 
orders will be problematic and will most likely be moved to the rework area. This extra layer of information 
is created by estimating the probability of any order in a cluster to be moved to the rework area, based on 
historical production data.  With this information, the worker can undertake the necessary measures to 
completely avoid or minimise the impact of potential disruptions. 

4. Results 

The production data for the given use case contains 6153 orders. We create a one-hot encoded matrix 
describing all possible configurations, used parts and production steps. Every possible product in this case 
can be completely described by a vector of length 2462. A Principal Component Analysis (PCA) [32] is 
performed to reduce dimensionality. As a result, the vector describing each order is reduced to 30 dimensions 
that capture 93.3% of the variation in the data. It is important to generate an intuitive visualisation combining 
both similarity information as well as historical production data. t-Distributed Stochastic Neighbour 
Embedding (t-SNE) [33] is used to map the 30 dimensional production orders onto a 2D plane for the ease 
of visual inspection. It groups similar observations together in tight clusters while trying to pull dissimilar 
observations farther apart. Singular points in the 2D space represent product configurations produced only 
once. To ensure t-SNE visualisations depict true clusters of similar orders we use Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) [34] as a validation method. Clustering methods are 
successfully used for detecting product families based on product similarities [23–25]. Figure 2 shows a t-
SNE generated 2D map of orders. On the same visualisation, DBSCAN clusters are colour-coded. From this 
figure it is clear that all points assigned to the same tight cluster by t-SNE have the same colour, defined by 
the affiliation to the one or another DBSCAN cluster. Therefore, DBSCAN successfully clusters similar 
products and t-SNE represents these clusters in a 2D space. 
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We add another layer of information to the 2D representation of all produced orders by color-coding (in this 
case encoded as with color gradient from black to white) according to the estimated rework ratio per cluster 
of similar products, which is represented in Figure 3. This allows the user to quickly see what planned orders 
can potentially lead to disruptions during production, because it belongs to a cluster with an estimated high 
rework ratio (clusters with brighter colouring) or because of a new configuration (single point not surrounded 
by other observations). It allows the user to prepare for possible process disruptions. 

5. Conclusion and Outlook 

Even in a highly automated and digitized production environment, disruptions will occur due to unforeseen 
failures of machines, humans or other resources. Therefore, disruption management is an important 
managerial task that needs to be handled with domain expertise and supported by data-driven approaches, 
such as ML. The presented paper introduces the concept of using ML to facilitate disruption management 
by identifying possible problematic orders based on historical data and through the discussion of an 
application use case. We used unsupervised ML to form clusters of similar product configurations, evaluate 
the likelihood of rework based on historical data and generate a 2D visualisation allowing to approximate 
how much rework planned orders are likely to require. 

Building on the presented findings, the next step will be the validation of the concept. To do so, we will use 
data from the presented use case and implement a dashboard for the workers in the assembly line. With the 
dashboard, they should be able to anticipate possible disruptions and derive possible strategies on how to 
manage the assembly in the case of a disruption. This will serve as a starting point for the creation of an 
assistance system that will go a step further than solely helping to detect possible disruptions, but helping to 
derive possible reaction strategies. Thus, the workers need only to decide between the best alternatives, 
which should lead to a relief in the amount of work created by managing disruptions. 
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