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Abstract: In this paper, we propose a communication net-
work architecture for industrial applications that com-
bines new 5G technologies with other existing communi-
cation technologies on the shop floor. This architecture
connects private and public mobile networks with local
networking technologies to achieve a flexible setup ad-
dressing many different industrial use cases. We show how
the advancements introduced around the new 5G mobile
technology can address a wide range of industrial require-
ments. We further describe relevant use cases and develop
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an overall communication system architecture proposal,
which is able to fulfill not only technical requirements but
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narios.

Keywords: 5G mobile communication, heterogeneous net-
works, industrial communication, Industrial Internet of
Things, machine-to-machine communications, network
architecture, network function virtualization, network
slicing, software defined networking, Multi-RAT

Zusammenfassung: In diesem Paper wird eine Architek-
tur fiir Kommunikationsnetze fiir industrielle Anwendun-
gen vorgestellt, die neue 5G-Technologien mit vorhande-
ner Kommunikationstechnik auf der Feldbusebene kom-
biniert. Diese Architektur verbindet private und 6ffent-
liche Mobilfunknetze mit lokalen Funktechnologien, um
einen flexiblen Aufbau zu ermdéglichen, der in der Lage
ist, viele industrielle Anwendungsfalle zu unterstiitzen. Es
wird gezeigt, wie die Errungenschaften, die mit der neu-
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en 5G-Technologie eingefiihrt werden, einen grofien Be-
reich der industriellen Anforderungen erfiillen kénnen.
Weiterhin werden relevante Anwendungsfalle beschrie-
ben und eine Gesamtsystemarchitektur vorgeschlagen,
welche nicht nur die technischen, sondern auch die funk-
tionalen Anforderungen, welche von den spezifischen An-
wendungen heutiger und zukiinftiger Herstellungsprozes-
se gestellt werden, erfiillen kann.

Schlagworter: 5G Mobilfunk, Heterogene Netze, Indus-
trielle Kommunikationstechnik, Industrial Internet of
Things, Machine-to-machine communications, Netzwerk-
architektur, Network Function Virtualization, Network Sli-
cing, Software Defined Networking, Multi-RAT

1 Introduction

The growing digitalization and interconnection of manu-
facturing processes is leading to a closer gearing of com-
panies, suppliers and customers. Production becomes in-
creasingly flexible and the connectivity of the devices has
to become likewise flexible. This is why 5 generation mo-
bile networks (5G) are considered to be key enablers for
new use cases towards the vision of Industry 4.0, such as
advanced condition monitoring, predictive maintenance
and product quality assurance. In this regard, the research
initiative “5G: Industrial Internet (5G: II)” [1] of the German
Federal Ministry of Education and Research addresses the
requirements on a 5G communication network in indus-
trial production. As a part of this initiative, the collabo-
rative 5Gang research project [2] considers different use
cases of future industrial production and their require-
ments on the communication network. The project scope
covers not only local production sites but also opportuni-
ties arising from adding inter-site connections. 5Gang is a
consortium of eight partners from industry and academia
who bring in their experience covering technical, business
and production process aspects.

In this paper, we describe a way towards a flexible
architecture for industrial networking, which is able to
support the heterogeneous networking technologies in to-
day’s production facilities while benefiting from 5G tech-
nology at the same time. In Section 2, we summarize re-
lated work on 5G and establish relations to existing archi-
tectures. In Section 3, we present use cases along with their
technical requirements on 5G systems, as well as system
requirements together with exemplary uses cases, which
we use to verify the developed system architecture. We de-
tail our 5Gang architecture, its system components, func-
tions and interfaces in Section 4 and describe in Section 5,
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how the system architecture integrates into existing refer-
ence architectures. Finally, we draw conclusions in Sec-
tion 6.

2 Related work

The field of industrial information technology and indus-
trial communication already plays an important role in to-
day’s production facilities and is increasingly becoming a
focus of interest from both academia and industry along
with the course of the German “Industry 4.0” initiative.
As we will show in the following sections, the fulfillment
of requirements of manufacturing use cases necessitates
the use of 5G systems, as all three main capabilities of
5G are addressed, either by the sheer number of partici-
pants in the network (massive Machine Type Communica-
tions (mMTC)), by demanding real-time capabilities (Ultra-
Reliable and Low Latency Communications (URLLC)) or
by demanding very high bandwidth (Enhanced Mobile
Broadband (eMBB)).

There are already descriptions of 5G system architec-
tures, partly covering manufacturing scenarios, which we
summarize in the following. Also, industrial use cases and
related requirements have been discussed in the literature
already. We will provide a short overview in the following.

2.1 Benefits of 5G

The standardization of 5G is planned to be finished by
2020. Its first release, Release 15, was already approved by
3GPP in June 2018 and first commercial, pre-standard sys-
tems were deployed already in 2018. By the end of 2019,
3GPP Release 16 will be frozen. Although requirements
might change under way, the overall targets are taking
shape and can be considered as a basis for 5Gang. The
United Nations organization ITU-R addresses three main
capabilities that define the requirements for 5G [3]:
1. eMBB will provide up to 20 Gbit/s of data towards
the end-users (100 Mbit/s per user) and 10 Gbit/s
(50 Mbit/s per user) from the end-users towards the
network. The user plane latency shall be below 4 ms.
2. URLLC, or critical Machine Type Communications
(cMTC), requires a user plane latency of less than 1 ms.
3. mMTC will allow up to 1,000,000 connected devices
per km? with given Quality of Service (QoS) [4, 5, 6].

To some extent, existing wireless technologies can fulfill
the eMBB and mMTC requirements already today. How-
ever, they cannot reliably support the URLLC case. Apart
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from the New Radio (NR) interface [7], which mainly tack-

les the technical requirements above from a radio design

perspective, 5G will impose massive changes to network-
ing in general and to the core network in particular, too:

— Softwarization and virtualization: The same physical
resources (communication, computing, storage) can
be used for many use cases. A distributed cloud (DC)
allows to move certain nodes of the mobile network
closer to the end-user, which, in the case of a produc-
tion environment, can even mean core network nodes.
From an economic standpoint, this would not be rea-
sonable with high-performing, specialized hardware.
Here, the virtualization techniques reduce costs: In-
stead of installing expensive hardware in the factory,
3GPP has standardized the option to execute certain
virtualized user plane functions inside the factory.
This allows to keep data inside the factory, which is
an important privacy aspect, and reduces network la-
tency [8].

- Software Defined Networking (SDN): SDN [9] enables
network elements to be controlled by a central intel-
ligent management platform, enabling dynamic and
flexible information routing. Based on SDN, network
slicing [10, 11] dynamically reserves resources per ap-
plication and provides the required QoS, improving
system reliability and flexibility (see, e. g., [12] for the
condition monitoring use case).

- Mesh network: In a mesh network [13], each node can
have a direct connection to several neighbor nodes
and cooperate with them to efficiently route data.
Mesh networks are self-organizing, self-healing and
provide a high robustness against link/node loss.
Also, the communication range and resilience can
be increased while enabling efficient device-to-device
communication.

Other advantages of 5G for industrial networking are:

- Mobility support: Moving workpiece carriers can be
controlled or tracked not only inside the factory but
also on their way between different production sites.

— Energy efficiency: 5G allows operating times of 10
years for transmitting small volumes of data from
battery-powered devices in an energy-efficient man-
ner.

- Security: SIM cards (or alternatives) provide a secure
way to manage devices and restrict network access.

— Economy of scale: The large 5G ecosystem will in-
crease the volume of the radio modems leading to
cheaper equipment, which would not be possible if
every production solution used separately specialized
hardware.
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2.2 5G architecture descriptions

In the following, we provide an overview of the 5G architec-
ture descriptions existing today and will investigate, how
our proposed architecture aligns with them.

2.2.1 NGMN 5G architecture for verticals

The “5G White Paper” [14] of the NGMN consortium is
one of the first that brought up 5G for verticals. It ad-
dresses verticals and envisions the use cases of massive
sensor networks in the Internet of Things (IoT), which is
termed “massive I0T”, of ultra-reliable communication,
and of extreme real-time communication, e. g., for collabo-
rative robots. All three use cases are also considered in the
5Gang project and require security, identity and privacy;
real-time, seamless and personalized experience; respon-
sive interaction and charging, as well as QoS and contex-
tual behavior of the system. Beyond connectivity, 5G may
offer services like transparency of connectivity, location,
resilience, reliability, and high availability. We design our
architecture, such that it integrates with and details the
(virtualized) infrastructure resource layer and parts of the
business enablement layer of the “5G architecture” in [14,
sec. 5.4].

2.2.2 5GPPP 5G architecture

A 5G architecture has been developed by the EU-funded
project “5GPPP” in [15]. It primarily focuses on network
slicing and the radio access. It also gives a detailed
overview of the capabilities of each component and de-
scribes the infrastructure, into which the 5Gang architec-
ture well integrates for the use in the factory of the fu-
ture. The 5GPPP architecture is divided into resource/func-
tional, network and service levels. The resource/func-
tional level provides the physical resources for commu-
nication, computation and storage. In addition to the
wireless and fixed access it consists of edge cloud and
core/central cloud resources. Virtualization of the physi-
cal network is achieved by a network operating system and
programmable network control units, such that network
slices can be built on top. At the service levels, these slices
are orchestrated in an end-to-end fashion using manage-
ment functions of all levels. As our architecture enables
network slicing by providing the physical network infras-
tructure and corresponding management and orchestra-
tion interfaces, it integrates well into the 5GPPP architec-
ture.
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2.2.3 3GPP 5G architecture

3GPP also proposed a first architecture of its 5G system
in [16]. It details the 5G components on the network side,
e. g., base stations and the core network, assuming that
5G-enabled devices will have an anyhow natured 5G mo-
dem. In this paper, we embed the architecture of [16] into
the factory of the future and abstract it as the “cellular
backend”.

2.2.4 5G-ACIA 5G building blocks

The 5G Alliance for Connected Industries and Automa-
tion (5G-ACIA) [17] is a global initiative that brings to-
gether Operational Technology (OT) industry, Informa-
tion and Communication Technology (ICT) industry, and
academia to provide a common platform for discussing
technical, regulatory and business aspects of 5G for the
industrial domain. In their white paper [18], they pro-
vide an overview of 5G’s basic potential for manufactu-
ring, outline use cases and requirements, and name im-
portant 5G building blocks. There exists a plethora of op-
erational/functional requirements that go far beyond the
technical requirements of industrial use cases. In addition
to availability and reliability, the networks must feature
maintainability, safety and integrity. For example, func-
tional safety considers safety measures that prevent harm-
ing people or the environment and which must be inte-
grated as native network services. Towards the success
of 5G in the industrial domain, the 5G-ACIA promotes in
[18] the integration of 5G-enabled industrial components
with legacy communication technology, the operation of
private 5G networks, seamless handovers between public
and private 5G networks, and end-to-end network slicing
across technologies, countries and network operators. 5G-
ACIA particularly names wireless connectivity, edge com-
puting, and network slicing as technologies that make 5G
disruptive for the manufacturing industry. In this paper,
we tackle many of the mentioned technologies and inte-
grate them into our proposed architecture for industrial
networking.

2.3 Requirements of industrial use cases

In the following, we briefly review existing technical re-
quirements derived from industrial use cases on propri-
etary wireless communications and 5G systems.
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2.3.1 Requirements derived within the ZDKI programme

Requirements of industrial use cases have been investi-
gated in research projects of the German funding pro-
gramme “Reliable wireless communication in industry”
(German acronym: ZDKI). For example, in the “HiFlecs”
project, requirements of different industrial applications
have been grouped into three requirement profiles [19]. In
[20], two specific use cases of the “Kol” project and their
quantitative requirements have been provided. The results
in the “ZDKI” programme have been collected by the ac-
companying research project (German acronym: BZKI) in
the technical group 1: “Applications, Requirements and
Validation” and have been published in the report [21].
A thorough compilation of different industrial applica-
tions and quantitative requirements has been provided in
[22]. The authors showed that the spectrum of applica-
tions in an industrial environment is very broad and con-
sequently their requirements are very distinct. The authors
conclude that in order to have a suitable system design,
different technologies have to be combined purposefully
with regard to the specific applications, which we attempt
to realize in our proposed architecture, as well.

2.3.2 Requirements from 3GPP TR 22.804

In preparation of Release 16, 3GPP performed a study on
communication for automation in Vertical Domains. The
resulting report [23] names use cases and their require-
ments for the 3GPP 5G system. One major part is on the use
case class “factories of the future” in general and on fac-
tory automation in particular, as well as on industrial se-
curity requirements. Within these sections, the report [23]
addresses similar use cases as 5Gang, and the technical re-
quirements of 5Gang and [23] are well-aligned such that
this paper can be considered to detail the first approach of
the principle architecture in [23].

3 Use cases and requirements

In the following, we review some exemplary use cases and
technical requirements of 5G which have been developed
by 3GPP and within our 5Gang project. All use case classes
of [23], except for the “process automation” class, are con-
sidered and fulfilled when designing the overall network
architecture. However, for brevity, we only introduce the
ones, for which we exemplary will check that their sys-
tem requirements are fulfilled by the proposed system ar-
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chitecture (cf. Section 4). Whereas the focus of 3GPP is
on the use cases’ technical requirements, in Section 3.2
we derive and highlight functional system requirements,
which are important for the design of our system architec-
ture.

3.1 Example use cases and technical
requirements

We now describe some use case classes of 3GPP and give a
more application-specific view compared to [23]. We only
touch technical requirements of our use cases by high-
lighting some values and classifying them into the eMBB,
URLLC and mMTC categories (see Section 2.1). Safety re-
quirements are mostly omitted for the sake of brevity, as a
detailed safety architecture is left as future work. At first,
5G can be used to extend the field of application in an inno-
vative way while ensuring backward compatibility. A sec-
ond use case class focuses on mobile robots and mobile
material supply in a factory for mounting or distribution.
The third use case class focuses on the production oper-
ations themselves. Applications like tracking and tracing
systems, as well as flexible production without any wired
connected machines are examples within this class. The
fourth class addresses the control of the processes of the
production and logistics.

3.1.1 Use case class 1: Infrastructure retrofit

The benefits of 5G for infrastructure retrofits are included
in the use case “connectivity on the factory floor” of [23].
Within 5Gang we divide this use case into three sub-
problems: First, existing sensor and actor technologies
can be enhanced by their integration with mobile commu-
nication technology modules. In this regard, 5G is planned
to be more energy-efficient than, e. g., LTE and provides a
wider coverage than Bluetooth Low Energy and the-like.
This use case class contains all kinds of combinations
of sensor stacks (AUTO-IDs, cameras, condition sensors,
etc.) with 5G modules. Here, the potential for large-scale
infrastructure retrofits and improved, wireless connectiv-
ity between retrofitted sensors and actuators is unlocked
by both, 5G’s high bandwidth (eMBB) and ability for crit-
ical communication (cMTC or URLLC). Second, existing
communication infrastructure is often very weak in many
terms, e. g., in old production facilities without a proper
IT infrastructure or in large production areas without In-
ternet connection in the countryside. Here, 5G provides a
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more reliable network than LTE and can transfer critical
data. The third case addresses information multiplexing,
e. g., in a machine. The retrofit of communication systems
in machines by 5G allows outsourcing of the multiplexing
process by network slicing, so that configurations of the
machine can be performed independently from the ma-
chine and its use case.

Within 5Gang, we extended this use case (class) by
the process automation-related use case “decentralized
measurement network”, e. g., devices, which measure the
gas flow through pipelines in remote areas for central gas
flow monitoring and regulation. Due to long distances be-
tween measurement spots, e. g., across countries, and de-
centralized equipment, 5G can provide connectivity to the
sensors. In areas of no coverage, few sensors can act as
5G gateways, where the sensors are connected with each
other using another mesh network technology. Since the
pipeline infrastructure already exists, we classify it into
retrofit. Here, a latency of the information multiplexing
processes is essential, such that the 1 ms provided by 5G
is the key potential for this use case (URLLC).

3.1.2 Use case class 2: Mobile robots

This class includes applications with different automated
driven vehicles, like automated guided vehicles (AGVs),
which transport material in a dynamic environment. In a
well-planned production, the material flow follows a milk
run principle with dynamic changes of the milk run route.
In some cases, AGVs can be controlled in a master-slave re-
lation, in which only the master AGV communicates with
the production system and the slave-AGVs are connected
to the master through their own network.

The most challenging scenario is “Distributed Indoor
SLAM” (SLAM: Simultaneous Location And Mapping), in
which AGVs or mobile production robots reliably navigate
in a spatially varying production environment using high-
precision navigation based on real-time maps, as shown
in Fig.1. Each AGV provides its own measurements for
other devices to create the common map. The mapping
needs to be timely synchronized (within less than 50 ms
of latency) and shared among the devices, so that they
can simultaneously locate themselves and plan further
movements. The necessity of using 5G technology arises
from the real-time requirement of the served application
(URLLC). Furthermore, high bandwidth requirements exist
(eMBB). Also, computing power, e. g., using a local (edge)
cloud is needed for generating the timely synchronized
maps in real-time.
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Source: SICK AG, Waldkirch, Germany

Figure 1: Distributed Indoor SLAM.

3.1.3 Use case class 3: Inbound logistics for
manufacturing, flexible and modular assembly
area, plug-and-produce

Due to the transition to flexible manufacturing and cus-
tomization of the production processes, companies in-
creasingly ask for a dynamic order-change request system.
This requirement demands reliable tracking of the desired
product during the entire supply chain process. Hence,
“Track and Trace” applications cover orders and material
flow across different locations of the supply chain and in-
clude sub-use cases such as the following: A company-
independent tracking via an Auto-ID combined with mo-
bile communication technologies like 5G, as well as dy-
namic allocations for material in different production envi-
ronments (different facilities). Attaching sensors to work-
piece carriers provides a solution approach to track and
trace each workpiece carrier independently when con-
nected via a mobile network. This redesigned sensor-stack
using 5G can be realized independently for each workpiece
carrier across company locations, even on global logistic
routings. As a result, the customer will have an overview
of the exact location of his product and which modifica-
tions can still be ordered.

The second problem that requires a shared tracking
and tracing system is the stocking of material in a shared
warehouse. So far, the delivery of materials requires a
manual check-in followed by the search for a suitable
stocking place in a warehouse. To optimize this, a shared,
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digitalized, 5G-connected warehouse provides a solution
approach.

In 5Gang another use case has been identified, which
tracks the product quality along the production line. Ad-
ditional processing of defective parts is costly and should
be avoided. So, the use case aims to detect defects in parts
at earlier stages through inline quality control. Corrective
measures can be taken and necessary post-production can
be initiated before final inspection is completed. A sim-
ilar case occurs when tracking items within a logistics
chain. Here, the transport conditions (e. g., cooling tem-
perature) are monitored continuously. In the event of sig-
nificant deviations, a re-order can be made before the
items arrive. In the former example, tracking of items is
performed within a production facility, whereas in the lat-
ter, the item is tracked around the world. In both exam-
ple, sensors, placed on or near the item, on the workpiece
or on the workpiece carrier, transmit their measured val-
ues (temperature, humidity, shock, vibrations) to a central
point for evaluation. The benefit of using 5G technology
arises from the high amount of participants in the network
(mMTC).

3.1.4 Use case class 4: Massive wireless sensor network
and process monitoring

In production, unexpected machine defects cause down-
times, which result in high costs and delays in delivery,
and the quality of products depends on the condition of
machines which produce them. Automated supervision of
machine conditions can prevent unplanned defects, en-
able planning of maintenance activities, and support con-
tinuous product quality control. Distributed sensing of
condition values, e. g., noise recordings, offers a solution
for anomaly detection. Collecting such data from several
locally uncorrelated sources requires a large number of
sensors. The 5G mMTC profile is optimized towards these
requirements in order to build an Industrial Internet of
Things (IIoT) network by supporting up to 1,000,000 de-
vices per km?, and dedicated frequency bands allow for
independence from the existing infrastructure. This use
case requires high mobile broadband connectivity because
sensor technologies like high resolution cameras need to
be integrated into the machines. If the production pro-
cess contains many different machines with various con-
nected sensors and actors, the number of connected de-
vices rises and a transmission technology like 5G is neces-
sary to ensure a reliable IIoT. In order to realize services,
such as predictive maintenance, condition monitoring or
anomaly detection, sensor nodes need to be allocated to
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dynamic processes and to be mobile over different loca-
tions.

In a specific use case, audio data recorded by micro-
phones shall be sent to a central evaluation unit (e. g., ina
cloud), which detects anomalies in this data. The sensors
have limited mobility and can be distributed across the en-
tire production hall. They can change their positions oc-
casionally (e. g., during reconfigurations or rebuilds) and
they are required to have a long battery life, since they
can be placed at locations that are difficult to access. The
massive amount of wireless sensor nodes will require the
5G mMTC profile as an enabler. Furthermore, a proper de-
vice management must be installed to manage and up-
date the wireless sensor participants and to control access
rights.

3.2 Functional system requirements

The functional requirements on the system basically equal
the main reasons for a plant manager to introduce the new
network system. In principle, the new system must have
a good overall return on invest within only a few years
and shall be future-proof. The return typically comes ei-
ther from higher production quantity at the same fixed ef-
fort (increased efficiency), from a higher degree of automa-
tion or from slimmed processes, which in turn increase
production quantity, too. As we do not see the one and only
killer use case, which will pay off the invest, the system
needs to accumulate benefits from different use cases—
and the collection of beneficial use cases will for sure dif-
fer from plant to plant. The invest includes effort for pur-
chasing and operating the network, for retrofitting solu-
tions, and necessary adoptions of existing systems and
processes. A smooth transition from legacy solutions to
new technology, e. g., 5G, is necessary, requiring interop-
erability across systems and technologies. Salient require-
ments are the following:

Flexible and Interoperable Infrastructure: The sys-
tem shall support all use cases with one common and in-
teroperable infrastructure, which can be deployed world-
wide. User equipment surely will implement only subsets
of the standard, which are appropriate for the specific ap-
plication, as not all technical requirements of all use cases
can be fulfilled at a time, e. g., high data rate with long bat-
tery lifetime.

Flexible Network Ownership and Operation: This
means in particular:

1. Easy and fast deployment, operation and manage-
ment in small and medium-size companies, which do
not want to afford owning the network infrastructure
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and which want to use an operator instead, as well as
in large-size companies, which might want to operate
their own network infrastructure.

2. Private, sensitive production data (the key value and
know-how of production) shall stay on-premise and
private. Data shall be shared only through well-
defined channels, e. g., across different plants.

3. Thus, private networks shall be supported in licensed
(local/regional licensed spectrum or sub-licensed
from MNO) and in unlicensed bands (2.45 GHz WLAN).

4. In case the manufacturer does not setup a private net-
work, public infrastructure shall provide a local break-
out without the operator being able to access the data.

5. System and network operation/management with
minimum human/operator intervention and auto-
matic interference alignment between neighboring
plants (public-private, private-private).

Functional Requirements derived from the Exemplary

Use Cases: All use cases have in common:

1. 5G gateways and sensor nodes shall be easy to install
and maintain as costs scale with installation effort.

2. Existing production/process infrastructure shall be
securely connected through their existing interfaces
(fieldbus, Industrial Ethernet, etc.) and 5G modems in
order to become a part of the overall network.

3. The infrastructure shall allow to build isolated sub-
networks with well-defined transfer paths.

4, The system shall integrate existing infrastructure
without adjustments or additional hardware/software
for incremental retrofitting. This particularly includes
the integration of different wired or wireless access
technologies like (Industrial and classic) Ethernet,
field bus networks, WLAN, RFID and Bluetooth.

5. The system shall support indoor and outdoor opera-
tion with handover. The typical size of an indoor shop
floor is some 100 m in square.

From use case class 1 (“infrastructure retrofit”):

1. All infrastructure shall be wirelessly covered. If some
area is not covered by a base station, device-to-device
or mesh network technologies shall be supported.

2. Machines and devices shall be managed remotely,
e. g., by a cloud service.

From use case class 2 (“inbound logistics”):

1. The overall network shall support intra-site connec-
tions and (seamless) connectivity along the logistics
routes.

2. Localization shall be supported with required accu-
racy ranging from 1m to 1 cm in three dimensions.
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From use case class 4 (“massive wireless sensor net-

works”):

1. The system shall manage non-cellular radio sub-
systems, such that intra-system interference is
avoided.

2. In order to extend coverage and to handle high num-
bers of devices, gateways shall support mesh network
technologies or 5G device-to-device.

3. The system shall support user equipment to establish
multiple connections to different base stations in or-
der to balance data traffic and to increase reliability.

4 5Gang system architecture

The proposed architecture and its involved components,
which are depicted in Fig. 5, have been designed to meet
the requirements derived above while assuming 3GPP’s 5G
will fulfill all their technical requirements in each flavor,
eMBB, URLLC and mMTC. In the following, we present the
architecture along with descriptions of its components.

4.1 Overview

Apart from the improvements and specifications men-
tioned in Section 2, our architecture covers not only the 5G
context but also technologies already in use in today’s ma-
nufacturing facilities. This flexible combination of tech-
nologies to enable specific use cases forms, to the best of
the authors’ knowledge, a unique characteristic. The net-
work system is a system of systems, where typically func-
tions are already mapped onto components. Hence, and
for the ease of description, we combine components, the
functions they provide and the respective interfaces into
one description. As has been described in Section 2, soft-
warization and virtualization will make the alignment of
component and function arbitrary in many cases, which
backs the reasons.

4.2 5G RAN and core network

On a very high level the network consists of a core and
a radio network. 5G will provide a new architecture [24]
building on a completely new core network, 5G Core, and
an optimized radio network, 5G RAN. Normally the net-
work is operated by Mobile Network Operators (MNO) be-
cause they own the frequency spectrum. If a factory owns
or leases the spectrum it can as well operate an own net-
work. There is also the option to run only critical compo-
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nents as private infrastructure on-premise and connect it
to a public network, which is managed by a MNO. In the
scope of this paper we assume that the network supports
public/private operations with all the respective require-
ments given in Section 3.2, as well as converge with other
network technologies like WLAN, fieldbus and Industrial
Ethernet by the use of the proposed Aggregation Point.

The 5G RAN is often called 5G New Radio (5G NR).
It uses an optimized radio interface with a much higher
bandwidth compared to the 4G RAN. For sensors with a
very low bandwidth it can as well operate in a more en-
ergy efficient setup. For more stringent URLLC use cases,
sensors and actuators are most likely be connected via a
5G NR interface or a wired network.

The 5G Core network will be built on cloud native soft-
ware meaning among other advantages that the SW is bet-
ter adapted for virtualization. This will enable the imple-
mentation of smaller software components for smaller fac-
tories in less powerful, smaller data centers.

4.3 Aggregation point (AP)

The aggregation point (AP) is the core of our proposed
architecture. It is primarily responsible for providing IP-
based connectivity of the networks with large numbers of
sensors, controllers, and actuators, all of which could be
using different wireless/wired technologies, to the core 5G
network and/or to the cloud. The AP is thus to be located at
the edge of the network and includes different wireless, as
well as wired interfaces. The AP employs SDN solutions to
manage the traffic within and between its connected net-
works. It comprises of an SDN-capable switch (e. g., Open
vSwitch [25]) to facilitate the traffic management, and an
SDN controller (e. g., Ryu, OpenDaylight) to obtain a cen-
tralized logical view of the network. A radio management
system entity is also part of the AP. It manages a large num-
ber of connected wireless nodes while implementing self-
organization network techniques to optimize the overall
network performance. Regarding the functional system re-
quirements derived in Section 3.2, the aggregation point is
able to address the following demands:

— The AP provides a gateway functionality, i.e., it al-
lows the integration of heterogenous radio technolo-
gies while maintaining transparent routing.

— It provides an interface between the fieldbus domain
and the network domain, while considering the differ-
ent network properties.

— It offers different wireless interfaces, thus providing
5G-capability to existing hardware, i. e., in a brown-
field scenario.
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- Being equipped with several wireless interfaces, the
AP allows to provide seamlessness during handover
procedures and to improve reliability and/or data rate
by exploiting interface diversity.

4.4 lloT edge gateway

The IIoT edge gateway primarily provides connectivity to
networks with a large number of sensors, controllers and
actuators, all of which can use different wireless/wired
technologies. It is thus located at the edge of the 5G net-
work close to the data provider and at the edge of the net-
work leading from the machine to the cloud. The main task
of the gateway is to collect, edit and reduce the data avail-
able (at the edge), thereby optimizing the transport by the
network in terms of speed and costs, which distinguishes
it from the transparent routing in the aggregation point. It
interfaces sensors and actuators and provides them with
further connectivity, e. g., to a (edge) cloud service or a
service within the production environment/company net-
work. Therefore, it contains a 5G modem and includes dif-
ferent wireless as well as wired interfaces like analog/digi-
talI/Os (e. g., classic 4 to 20 mA/0 to 10 V), (Industrial) Eth-
ernet and Ethernet-based fieldbuses (PROFIBUS, Sercos
III, CAN, Modbus, etc.) or wireless (Bluetooth low energy,
IEEE 802.11 WiFi). As a special case, a 5G device-to-device
link is used, where sensors and actuators share the 5G con-
nection of the gateway. Furthermore, the gateway contains
storage and processing resources, which might offer edge
cloud services to the connected devices. From a production
point of view, the AP shall interface to the process, i.e.,
collect the operating and diagnostic data of the machine
or its sensors together with a time stamp. The compute
and storage resources provide maximum flexibility to the
user: The data can be cached, pre-processed and analyzed
on-site such that, e. g., only alarms are forwarded through
the 5G interface. In addition, the type of transmitted data
and the size of packets can be dynamically managed and
different modes of link operation can be used in order to
adjust connectivity costs: an online mode with permanent
connection; an interval mode which transmits only regu-
larly at specified periods; and a sleep mode where the de-
vice transmits only if needed. Furthermore, classic IT se-
curity mechanisms can be implemented using transport
layer and end-to-end encryption. As special cases, the pro-
cessed data can be sent through the mobile radio provider
with the strongest signal (“unsteered roaming”). The at-
tached devices are typically managed via a cloud service
(device cloud). An extremely stripped-down version of the
IIoT edge gateway could be wireless sensor/actor devices
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themselves, which build up a mesh network among each
other.

4.5 Device cloud

The device cloud handles tasks such as user, device and
access rights management and sends new settings to the
device. Furthermore, it lets users further process data us-
ing a standardized API (e. g., RESTful), in an Enterprise Re-
source Planning (ERP) system or with data cloud services.
Further functions are alerting, sending and receiving con-
firmation via SMS, field strength display of the current data
connection, and creation of reports and their delivery to
authorized recipients.

4.6 Non-cellular radio management

The radio management entity gathers context information
about the radio environment and particularly about the
link quality of the wireless links associated with the AP.
This information can be used to apply self-organization
mechanisms to the overall connectivity solution using
the SDN capabilities of the AP in order to achieve a
complication-free operation of different wireless technolo-
gies. With this, the functional requirement of providing in-
terference alignment, derived in Section 3.2, is fulfilled.
Moreover, utilizing several wireless interfaces, interface
diversity can be exploited, which in turn leads to an im-
proved reliability and/or to an increased data rate, which
are functional requirements of many industrial use cases.

One example is shown in Fig. 2. A device, in this case
a controller, is connected to the AP using two indepen-
dent WLAN adapters. In a first step, only one wireless link
is established using one WLAN interface, which occupies
channel A. The SDN switch is configured in a way, such
that traffic going through this interface is routed towards
the cloud. The second WLAN interface is used for wire-
less monitoring. Both interfaces send context information
about the current wireless status to the radio resource
management. Using this information, if the utilization of
a different channel would be beneficial, a second WLAN
link is established using channel B. The SDN switch is re-
configured, so that the second wireless interface is now
routed to the cloud. After this, the first wireless link can be
shut down. This process is “make before break” and works
seamlessly, i. e., without packet loss. It is also possible to
improve this approach with multipath techniques such as
Multipath TCP or parallel redundancy protocol (PRP). The
intelligent Radio Management entity also enables to align
interference between private and public networks, and be-
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Figure 2: Example for using the “Radio Management” Entity.

tween private networks, which increases the robustness
of the communication and reduces human and operator
intervention. The latter itself reduces costs for the plant
owner.

4.7 SDN controller

The SDN controller is the centralized management unit of
the network. It acts as a strategic controller in the SDN
network, manages the flows inside this network and com-
putes the route which a flow has to follow. In order to do
so, it manages the flow-tables on SDN switches which are
along this route. With the help of an SDN controller, it is
possible to configure the network dynamically so that it
meets the changing needs related to configuration, secu-
rity and optimization. The most popular protocols used by
SDN controllers to communicate with SDN switches are
OpenFlow and Open vSwitch data-base (OVSDB). Open-
Daylight and Ryu are two typical SDN controllers.
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Context
Information

4.8 SDN switch

An SDN switch is a device, which receives, sends and for-
wards data packets in a network in order to meet spe-
cific requirements. It follows the rules in a flow-table,
which is managed by the SDN controller via SDN protocols,
like OpenFlow. There are some virtual SDN switches, e. g.,
Open vSwitch (OVS), to provide a switching stack for hard-
ware virtualization environments. In case high switching
capacity is needed, dedicated SDN hardware switches are
available which are offering enhanced SDN performance.

4.9 Tracing of requirements

With the exception of localization, all functional system
requirements of all use cases, and especially those of the
exemplary ones shown in this paper, are fulfilled by the
communication system architecture. Table 1 shows a sum-
mary of the requirements trace.
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Table 1: Functional system requirements and fulfilling component.

DE GRUYTER OLDENBOURG

Functional system requirements

Fulfilled by component

Integration of heterogeneous radio technologies, transparent routing
Interface between “fieldbus domain” and “network domain”
Retrofitting, Support of brown-field scenarios

Separation of private and public data transmissions

Interference alignment, preventing intra-system interference
Seamlessness (Handover, Reliability)

Very high data rates (uncompressed video streams)

IT-Security

Remote Management of devices

Aggregation Point

Aggregation Point

Aggregation Point, [loT Edge Gateway

SDN Controller, SDN Switches, Private 5G RAN, Private 5G Core
Non-cellular Radio Management

Aggregation Point (Multipathing), SDN (Network topology)
Aggregation Point (Multipathing)

Inherent cellular security mechanisms (SIM cards)

Device Cloud

Life Cycle & Value Stream

Layers

Business

Functional

Information

Figure 3: RAMI 4.0 reference architecture.

5 RAMI 4.0 and IIRA integration

In the literature, there are similar reference architectures
for productions already described and it seems sensible to
compare them to the architecture proposed in this paper.
For the vertical integration of production technologies, the
two most-cited reference architectures for the Industrial
IoT (IIoT) [26] are the Industrial Internet Reference Archi-
tecture (IIRA) of the Industrial Internet Consortium (IIC)
and the RAMI 4.0 architecture of the German “Plattform
Industrie 4.0°, for which we show ways of integration of
our proposed architecture below.

5.1 RAMI 4.0

The “Reference Architectural Model Industrie 4.0” (RAMI
4.0) [27, 28] has been designed as a future reference model
for industrial production and automation to categorize
and differentiate different architectural views that are re-
lated to each other. The RAMI4.0 (cf. Fig. 3) is structured
as a three dimensional model comprised of the axes Hi-
erarchy Levels, Layers and Life Cycle & Value Stream.
The Hierarchy Levels represent the classical automation

Functional Domains

sanAjeuy |eUsnpu|
[onuoy Jualjisay @ jusbijeu|

Ainoauuo)
Juawabeue eje( pangu)s

Physical Systems

Figure 4: 1IRA reference architecture.

pyramid, which structures different layers of responsibil-
ity and aggregation from field devices over control hard-
ware to higher-level applications (Manufacturing Execu-
tion System (MES), ERP etc.). The Hierarchy Levels en-
hance the classical pyramid by the categories Product and
Connected World, which includes intelligent (communi-
cating) products, as well as interconnecting enterprises
and shop floor software technologies to cloud technolo-
gies. The industrial networking architecture presented in
this paper covers all hierarchy levels, i. e., its offered func-
tionality addresses every layer in the automation pyramid,
as well as the connection to superordinate cloud services.
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The RAMI4.0 Layers axis divides the solution into six
functional levels, of which the communication layer is
covered by the architecture presented in this paper. The
last dimension of the RAMI4.0 addresses the Life Cycle
and Value Stream of products. It divides the product de-
velopment and the usage process into a type and an in-
stance phase. Whereas the type phase refers mainly to
product development including documentation, construc-
tion plans, etc., the instance phase refers to the usage
phase of the product, in which data is collected during
operation. The architecture presented in this paper covers
run-time of the 5G system and hence the instance phase
of a product life cycle, which is more challenging from a
communication point of view.

5.2 IIRA

The IIRA [29] of the Industrial Internet Consortium (IIC)
follows ISO/IEC/IEEE 42010:2011 “Systems and Software
Engineering—Architecture Description” [30] and contains
an IIoT architecture framework, which in turn contains
views on stakeholders, concerns and viewpoints as its ar-
chitecture frame, and views and models as its architec-
ture representation. Considered viewpoints are business,
usage, functional and implementation, which help to find
stakeholders of an IIoT solution. In general, the IIRA
consists of three dimensions: Functional domains, sys-
tem characteristics and cross-cutting functions (cf. Fig. 4).
It considers functional domains, namely control, oper-
ations, application, business and information. As high-
lighted in Fig. 4, our proposed architecture covers all func-
tional domains except the Business domain and all system
characteristics except Safety. Our architecture addresses
especially the Information functional domain as 5G allows
efficient and high-performance communications. The 5G
system allows information gathering and is part of the
cross-cutting functions; however, it is limited to the func-
tions Connectivity and Distributed Data Management con-
tained therein.

6 Conclusion

Our use case analysis has shown that a transition from a
legacy production factory to the factory of the future is a
complex task. It is important to consider the diversity of
use cases on the one hand, as well as the requirements im-
posed by plant owners and managers on the other hand.
While 5G is expected to fulfill the technical requirements,
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such as data rate and latency, the process requires addi-
tional efforts to design and deploy an architecture, which
takes into account interoperability of legacy communica-
tion technology, operation (business) models of the wire-
less infrastructure, and maintainability.

In this regard, we proposed a communication network
architecture for industrial applications, which combines
future 5G technology and non-cellular network technolo-
gies with existing technologies, such as fieldbus, on the
shop floor. Through the introduction of IoT Edge Gate-
ways, communication technology aggregation points and
by leveraging the benefits of SDN, network slicing and in-
telligent radio resource management, the architecture is
flexible enough to address many different industrial use
cases. It is also designed in a way to reduce human in-
tervention and provides the possibility to operate private
and/or public cellular networks depending on the factory
owner’s needs and capabilities. We have also illustrated
that our proposed architecture fits well into the existing ar-
chitectural frameworks and builds upon existing 5G archi-
tectures, which makes it universally suitable framework
for future industrial networking.

5Gangs’s future work comprises the implementation
of system components and the actual numerical evalua-
tion of the overall system performance with regard to the
identified requirements.
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