Towards Cognitive Assistance and Prognosis Systems in Power Distribution Grids

  • In recent times, both geopolitical challenges and the need to counteract climate change have led to an increase in generated renewable energy as well as an increased demand for clean electrical energy. The resulting variability of electricity production and demand as well as an overall demand increase, put additional stress on the existing grid infrastructure. This leads to strongly increased maintenance demands for distribution system operators (DSOs). Today, condition monitoring is used to address these challenges. Researchers have already explored solutions for monitoring critical assets like switchgear and circuit breakers. However, with a shrinking knowledgeable technical workforce and increasing maintenance requirements, mere monitoring is insufficient. Already today, DSOs ask for actionable recommendations, optimization strategies, and prioritization methods to manage the growing task backlog effectively. In this paper we propose a vision of a grid-level cognitive assistance system that translates the outcome of diagnosis and prognosis systems into actionable work tasks for the grid operator. The solution is highly interdisciplinary and based on empirical studies of real-world requirements. We also describe the related work relevant to the multi-disciplinary aspects and summarize the research gaps that need to be closed over the next years.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Ralf GitzelORCiD, Martin Hoffmann, Philipp zur HeidenORCiD, Alexander Skolik, Sascha Kaltenpoth, Oliver Müller, Cansu KanakORCiD, Kajan KandiahORCiD, Max-Ferdinand Stroh, Wolfgang BoosORCiDGND, Maurizio Zajadatz, Michael Suriyah, Thomas LeibfriedORCiD, Dhruv Suresh Singhal, Moritz Bürger, Dennis Hunting, Alexander Rehmer, Aydin Boyaci
DOI:https://doi.org/10.1109/ACCESS.2024.3437195
ISSN:2169-3536
Parent Title (English):IEEE Access
Subtitle (English):Open Issues, Suitable Technologies, and Implementation Concepts
Publisher:Institute of Electrical and Electronics Engineers (IEEE)
Document Type:Article
Language:English
Date of Publication (online):2024/08/01
Date of first Publication:2024/08/01
Release Date:2024/08/12
Tag:03; KI; LLM
AI; Artificial intelligence; Cognitive assistance system; Electrical grid infrastructure; Explainable AI; Large language models; Maintenance planning; Renewable energy; Service engineering
GND Keyword:Condition-MonitoringGND; Künstliche IntelligenzGND
Volume:12
Page Number:17
Note:
Dieser Beitrag gehört zum Projekt AProSys.
Laufzeit:
01.01.2023 – 31.12.2025
Förderkennzeichen:
03EI6090B
Zuwendungsgeber:
Bundesministerium für Wirtschaft und Klimaschutz (BMWK)
Projektträger:
Projektträger Jülich (PtJ) – Forschungszentrum Jülich GmbH
FIR-Number:SV7810
Institute / Department:FIR e. V. an der RWTH Aachen
Informationsmanagement
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International