Full-text downloads (blue) and page views (gray)

Proactive Fault Management by Big Data Usage

Download full text files

  • Library/Archive
    eng

Export metadata

Additional Services

Search Google Scholar

Statistics

Access statistics
Metadaten
Author:Gregor Fuhs
Publisher:FIR e. V. an der RWTH Aachen
Place of publication:Aachen
Document Type:Lecture
Language:English
Date of Publication (online):2024/06/21
Date of first Publication:2015/10/16
Release Date:2025/09/10
Tag:Störungsmangement
GND Keyword:Big DataGND
Page Number:21 Folien
Note:
BigPro: Big-Data and event-based adjustment for the configuration of resilient production systems

Project goal is the development of a Big Data platform including algorithms for data pattern detection to implement a proactivce disturbance management system in the production. Human data is considered as an additional data source. The disturbance management is further supported by an visualization of the disturbances and respective counteractions.

Duration: 01.09.2014 – 30.11.2017
Funding no.: 01IS14011
Funding: Bundesministerium für Bildung und Forschung (BMBF)
Promoters: DLR Projektträger

Project partners:
    Asseco Solutions AG, Karlsruhe
    AUTO HEINEN GmbH, Bad Münstereifel
    cognesys gmbh, Aachen
    DFA Demonstrationsfabrik Aachen GmbH, Aachen
    EICe Aachen GmbH, Aachen
    EML European Media Laboratory GmbH, Heidelberg
    FZI Forschungszentrum Informatik am Karlsruher Institut für Technologie, Karlsruhe
    i2solutions GmbH, Stolberg
    Robert Bosch GmbH, Gerlingen-Schillerhöhe
    Software AG, Darmstadt
    Laboratory for Machine Tools and Production Engineering (WZL) of RWTH Aachen University, Aachen
FIR-Number:SV6606
oral presentation:Transfervortrag
congress:Data Science: Theory and Application
place:Aachen
Date of the presentation:16.10.2015
Institute / Department:FIR e. V. an der RWTH Aachen
Informationsmanagement
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften