Refine
Document Type
Language
- English (3)
Is part of the Bibliography
- no (3)
Keywords
- Assembly (1)
- Assistance Systems (1)
- Decision Support (1)
- Deviation Detection (1)
- Disruption Management (1)
- Machine Learning (1)
- Mixed-Model Assembly (1)
- Production Control (1)
- Similarity Analysis (1)
- Visual Analytics (1)
Institute
Manufacturing companies are facing an increasingly turbulent market – a market defined by products growing in complexity and shrinking product life cycles. This leads to a boost in planning complexity accompanied by higher error sensitivity. In practice, IT systems and sensors integrated into the shop floor in the context of Industry 4.0 are used to deal with these challenges. However, while existing research provides solutions in the field of pattern recognition or recommended actions, a combination of the two approaches is neglected. This leads to an overwhelming amount of data without contributing to an improvement of processes. To address this problem, this study presents a new platform-based concept to collect and analyze the high-resolution data with the use of self-learning algorithms. Herby, patterns can be identified and reproduced, allowing an exact prediction of the future system behavior. Artificial intelligence maximizes the automation of the reduction and compensation of disruptive factors.
Due to Digital Transformation, also called Industry 4.0 or the Industrial Internet of Things, the barrier for implementing data collecting technology on the shop floor has decreased dramatically in the past years – leading to an increasingly growing amount of data from a multitude of IT systems in production companies worldwide. Despite that, the production controller still relies heavily on intrinsic knowledge and intuition for the management of disruptions in production. Thanks to advances in the fields of production control and artificial intelligence, potentials for the collected data for disruption management arise. However, in order to transform data into usable information and allow drawing conclusions for disruption management in production, the relevant data-objects, disturbances and alternative actions must be known. Thus, the decision-making can be supported, reducing the decision latency and increasing benefit of alternative actions. Therefore, the goal of this paper is to discuss the prerequisites necessary to perform a data based disruption management and the methodology itself, serving as an approach to allow companies to build a data basis, classify disruptions and alternative actions in order to improve decision making in the future. [https://link.springer.com/chapter/10.1007/978-3-030-28464-0_13]
Changing customer demands lead to increasing product varieties and decreasing delivery times, which in turn pose great challenges for production companies. Combined with high market volatility, they lead to increasingly complex and diverse production processes. Thus, the susceptibility to disruptions in manufacturing rises, turning the task of Production Planning and Control (PPC) into a complex, dynamic and multidimensional problem. Addressing PPC challenges such as disruption management in an efficient and timely manner requires a high level of manual human intervention. In times of digitization and Industry 4.0, companies strive to find ways to guide their workers in this process of disruption management or automate it to eliminate human intervention altogether. This paper presents one possible application of Machine Learning (ML) in disruption management on a real-life use case in mixed model continuous production, specifically in the final assembly. The aim is to ensure high-quality online decision support for PPC tasks. This paper will therefore discuss the use of ML to anticipate production disruptions, solutions to efficiently highlight and convey the relevant information, as well as the generation of possible reaction strategies. Additionally, the necessary preparatory work and fundamentals are covered in the discussion, providing guidelines for production companies towards consistent and efficient disruption management.