Refine
Document Type
- Article (1)
- Book (1)
- Part of a Book (2)
- Conference Proceeding (4)
- Contribution to a Periodical (16)
- Doctoral Thesis (1)
- Lecture (3)
- Internet Paper (4)
- Report (1)
- Working Paper (7)
Language
- German (27)
- English (11)
- Multiple languages (2)
Is part of the Bibliography
- no (40)
Keywords
- 02 (1)
- 04 (1)
- AR (2)
- AR-Format (1)
- AR-Plattform (1)
- AR-Technologie (1)
- Abschlussbericht (1)
- Anreizsysteme (1)
- Asset Management (1)
- Auction Mechanism (1)
Institute
Augmented reality seems to offer great potential benefits in the field of industrial services. However, the question of the exact benefits, both monetary and qualitative, is difficult to evaluate, as is the case with IT investments in gen-eral. Within the framework of the DM4AR research project, an evaluation model was therefore developed. Based on group discussions and interviews on potential AR use cases, a list of monetary and qualitative benefits was compiled to form the basis for selecting suitable evaluation modules in the existing literature. These include an impact chain analysis in the form of a strategy map, a monetary eval-uation as a calculation of the return on investment, based on the assumptions of the use case as well as existing studies, and a qualitative evaluation in the form of a utility analysis. The outcome is an evaluation model in the form of a multi-perspective approach that considers the impact of AR in the four perspectives of the balanced scorecard (financial, customer, internal business processes, learning and growth). The results of the qualitative and monetary evaluation can be sum-marized in a 2D matrix to support decision-making.
Augmented Reality (AR) bietet ein großes Nutzenpotenzial im Bereich der industriellen Dienstleistungen. Der genaue monetäre und qualitative Nutzen ist jedoch, wie bei IT-Investitionen im Allgemeinen, schwer zu bewerten. Im Rahmen des Forschungsprojekts Datenmanagement for Augmented Reality (DM4AR) wurde aus diesem Grund ein Bewertungsmodell entwickelt, welches den Nutzen von AR im industriellen Service messbar macht.
Eine Steigerung des Wertbeitrags der Instandhaltung kann nur im Zusammenspiel mit der Belegschaft sowie internen und externen Anspruchsgruppen geschehen.
Dabei bieten digitale Technologien eine Möglichkeit, Prozesse und Entscheidungen punktuell effizienter und besser zu machen. Eine nachhaltige Transformation muss jedoch nicht nur technologisch, sondern vor allem auch methodisch gestaltet werden.
Dabei müssen bewährte Methoden der zuverlässigkeitsorientierten
Instandhaltung und des Lean Managements mit den digitalen Technologien zusammenspielen, um den größtmöglichen Effekt für das Unternehmen zu erzielen.
Ziel des Forschungsprojekts ‚DM4AR‘ war es zum einen, eine AR-Plattform (Datenintegration, Schnittstellen und Datenmodell) zu schaffen, die der automatisierten Aufbereitung und Umwandlung der Daten in ein gängiges AR-Format dient. Zum anderen sollten die Mitarbeitenden mit geeigneten Ziel- und Anreizsystemen sowie Referenzprozessen in der Bereitstellung von implizitem Wissen unterstützt werden.
Durch die Ergebnisse des Projekts ‚DM4AR‘ kann zukünftig die wesentliche Barriere für die flächendeckende und produktive Nutzung der AR-Technologie durch die Etablierung eines plattformbasierten und automatisierten Ansatzes zur Datenaufbereitung überwunden werden. Dabei steht die einfache Integration in den operativen Serviceprozess im Vordergrund, um den Nutzen zu maximieren und die Umstellung der Serviceprozesse zu vereinfachen. Die ‚DM4AR‘-Ergebnisse ermöglichen somit die Sicherung und den gezielten Einsatz des im Unternehmen vorhandenen Wissens.
Das Projekt ´DM4AR`, welches am 1. Juni gestartet ist, hat sich zum Ziel gesetzt, die automatische Generierung von Augmented Reality Inhalten aus verschiedenen Datenquellen zu ermöglichen. Hierbei wird eine AR-Plattform zur automatisierten Aufbereitung und Umwandlung von Daten geschaffen und den Mitarbeitern ermöglicht über diese Plattform auf vorhanden Informationen und generierten Inhalte zu zugreifen. So können notwendige Informationen während des Leistungsprozesses kontextbezogen abgerufen werden. Dabei müssen die Mitarbeiter mit geeigneten Ziel- und Anreizsystemen sowie Referenzprozessen in der Bereitstellung von implizitem Wissen unterstützt werden. Die informationstechnische Realisierung erfolgt in Kooperation mit der oculavis GmbH und der Software AG. Die Erhebung der Anforderungen und Validierung der Forschungsergebnisse erfolgt mit der TOP Mehrwert-Logistik GmbH & Co. KG, thyssenkrupp Industrial Solutions AG und der YNCORIS GmbH & Co. KG.. Das Projekt wird durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert und durch den Projektträger Karlsruhe (PTKA) betreut.
Unser Projekt ‚Sales-Service‘ sollte dazu dienen, ein Vorgehen zu entwickeln, um Servicetechniker in den aktiven Vertrieb von Services und Produkten integrieren zu können und damit Unternehmen Wege aufzuzeigen, das Vertriebspotenzial aus der regelmäßigen und intensiven Kundeninteraktion der Servicetechniker stärker und gewinnbringender als bis dato zu nutzen. Hierzu gestalteten wir eine Analyticsbasierte Vertriebsunterstützung für Servicetechniker (in Form von Algorithmen für Open-Source-Software), mithilfe derer Unternehmen künftig die notwendigen Vertriebsinformationen bereitgestellt werden können. Zudem entwickelten wir Aufbau- und Ablauforganisation (Blueprints & Referenzprozesse) sowie die entsprechenden Managementinstrumente(Balanced Scorecard- & Anreizsystem) für einen vertriebsorientierten Service.
Vertrieb von Smart Services
(2019)
Durch die Digitalisierung werden die vertriebenen Leistungen und somit auch die Aufgaben für die Vertriebs- und Servicemitarbeiter komplexer. Zunehmend werden Produkte, Dienstleistungen und Software nicht mehr isoliert, sondern als integrierte Leistung-as-a-Service angeboten. Dieser Wandel betrifft das gesamte Unternehmen und die Art und Weise wie das Unternehmen agiert und hat großen Einfluss auf die Vertriebsorganisation. Der Kunde und dessen Nutzen rückt immer stärker in den Fokus der Aktivitäten von Unternehmen und sowohl Kundenkontakt als auch langfristige Kundenbindung werden zu einem zentralen Wettbewerbsfaktor.
Industry 4.0 and Smart Maintenance represent a great opportunity to make manufacturing and maintenance more effective, safer, and reliable. However, they also represent massive change and corresponding challenges for industrial companies, as many different options and starting points have to be weighed and the individual right paths for achieving Smart Maintenance need to be identified. In our paper, we describe our approach to evaluating maintenance organizations in a case study for the oil and gas industry, developing a shared vision for the future, and deriving economical and effective measures. We will demonstrate our approach, by showcasing a specific example from the oil and gas industry, where a need for action on HSE-relevant critical flanges in the company's piping systems was identified. We describe the steps, that were taken to identify the need for action, the specifications of the project and the criticality analysis of the piping system. This resulted in the derivation of a digitalization measure for critical flanges, which was first commercially analyzed and then the flanges were equipped with a continuous monitoring solution. Finally, a conclusion is drawn on the performed procedure and the achieved improvements.
Das Projekt Sales-Service hat zum Ziel, Servicetechniker in den aktiven Vertrieb von Services und Produkten zu integrieren und damit das Vertriebspotenzial aus ihrer regelmäßigen und intensiven Kundeninteraktion zu nutzen. Hierzu wird eine Analytics-basierte Vertriebsunterstützung für Servicetechniker (Algorithmen für Open-Source-Software) gestaltet, die ihnen die notwendigen Vertriebsinformationen bereitstellt. Zudem werden Aufbau- und Ablauforganisation (Blueprints & Referenzprozesse) sowie die entsprechenden Managementinstrumente (Balanced Scorecard & Anreizsystem) für einen vertriebsorientierten Service entwickelt. Das IGF-Vorhaben 19829 N des FIR e. V. an der RWTH Aachen wird über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.