Refine
Year of publication
Document Type
- Conference Proceeding (116)
- Part of a Book (63)
- Contribution to a Periodical (26)
- Article (14)
- Lecture (7)
- Working Paper (4)
- Book (3)
- Internet Paper (2)
- Report (2)
Is part of the Bibliography
- no (237)
Keywords
- 02 (16)
- 03 (11)
- 04 (1)
- 5G (2)
- 7. EU-Forschungsrahmenprogramm (1)
- AI (2)
- APMS (1)
- APS (1)
- Aachener PPS-Modell (1)
- Ablauforganisation (1)
Institute
- FIR e. V. an der RWTH Aachen (237)
- Produktionsmanagement (118)
- Dienstleistungsmanagement (67)
- Informationsmanagement (53)
- Business Transformation (10)
Companies operate in an increasingly volatile environment where different developments like shorter product lifecycles, the demand for customized products and globalization increase the complexity and interconnectivity in supply chains. Current events like Brexit, the COVID-19 pandemic or the blockade of the Suez canal have caused major disruptions in supply chains. This demonstrates that many companies are insufficiently prepared for disruptions. As disruptions in supply chains are expected to occur even more frequently in the future, the need for sufficient preparation increases. Increasing resilience provides one way of dealing with disruptions. Resilience can be understood as the ability of a system to cope with disruptions and to ensure the competitiveness of a company. In particular, it enables the preparation for unexpected disruptions. The level of resilience is thereby significantly influenced by actions initiated prior to a disruption. Although companies recognize the need to increase their resilience, it is not systematically implemented. One major challenge is the multidimensionality and complexity of the resilience construct. To systematically design resilience an understanding of the components of resilience is required. However, a common understanding of constituent parts of resilience is currently lacking. This paper, therefore, proposes a general framework for structuring resilience by decomposing the multidimensional concept into its individual components. The framework contributes to an understanding of the interrelationships between the individual components and identifies resilience principles as target directions for the design of resilience. It thus sets the basis for a qualitative assessment of resilience and enables the analysis of resilience-building measures in terms of their impact on resilience. Moreover, an approach for applying the framework to different contexts is presented and then used to detail the framework for the context of procurement.
Task-Specific Decision Support Systems in Multi-Level Production Systems based on the digital shadow
(2019)
Due to the increasing spread of Information and Communication Technologies (ICT) suitable for shop floors, the production environment can more easily be digitally connected to the various decision making levels of a production system. This connectivity as well as an increasing availability of high-resolution feedback data, can be used for decision support for all levels of the company and supply chain. To enable data driven decision support, different data sources were structured and linked. The data was combined in task-specific digital shadows, selecting clustering and aggregation rules to gain information. Visual interfaces for task-specific decision support systems (DSS) were developed and evaluated positively by domain experts. The complexity of decision making on different levels was successfully reduced as an effect of the processed amounts of data. These interfaces support decision making, but can additionally be improved if DSS are extended with smart agents as proposed in the Internet of Production.
Mobilität in NRW neu denken
(2018)
Monetizing Industry 4.0: Design Principles for Subscription Business in the Manufacturing Industry
(2019)
Subscription business models have a major role for monetizing products and services for manufacturing companies in the age of Industry 4.0. As the manufacturing industry has difficulties generating revenues through digitalization, the implementation of innovative business models are essential to remain successful. Physical assets are often capital-intensive and require a more complex manufacturing process than subscription business models. Moreover, subscription models can focus on the individual customer benefit and a consistent service transformation, constituting a unique selling proposition and a competitive advantage. Hence, the following paper provides a management model that enables manufacturing companies to successfully realize the transformation towards a subscription business model. The management model presents four major fields of action, each matched with one design principle that must be considered when dealing with subscription models in the manufacturing industry. These principles were determined by an in-depth case study analysis among various manufacturing companies. Opportunities, challenges and recommendations for action were then systematically derived and integrated into the management model.
Eine wesentliche Bedingung zur Optimierung der Wertschöpfungsprozesse ist die Transparenz über die leistungsbestimmenden Faktoren eines Unternehmens. Die Ermittlung dieser Faktoren stellt für viele Industriebetriebe eine Herausforderung dar. Im Rahmen der Veröffentlichung wird daher eine Vorgehensweise zur systematischen Identifikation von Einflussfaktoren der Unternehmenskennzahlen vorgestellt, welche die Grundlage zur Ableitung von individuellen Stellhebeln zur Steigerung der Unternehmensleistungsfähigkeit darstellt.
Through data-based insights into customer behavior, products and service offers can be improved. For manufacturing companies, smart product-service systems (SPSS) offer the possibility to collect customer data during the usage phase of the product. As the focus on customer analytics is too often on sales and marketing, SPSS are overlooked as a source of customer data. However, manufacturing companies need to integrate data from all interactions with their customers along the complete customer journey to achieve a holistic data-based view of the customers. To identify these interactions and the customer data derived from them, the concept of a digital shadow will be applied to the customer journey. The projected results for the presented work in progress are a reference process model for the customer journey in manufacturing and a data model of the customer data created along this process.
In the age of digitalization, manufacturing companies are under increased pressure to change due to product complexity, growing customer requirements and digital business models. The increasing digitization of processes and products is opening up numerous opportunities for mechanical engineering companies to exploit the resulting potential for value creation. Subscription business is a new form of business model in the mechanical engineering industry, which aims to continuously increase customer benefit to align the interests of both companies and customers. Characterized by a permanent data exchange, databased learning about customer behavior, and the transfer into continuous innovations to increase customer value, subscription business helps to make Industry 4.0 profitable. The fact that machines and plants are connected to the internet and exchange large amounts of data results in critical information security risks. In addition, the loss of knowledge and control, data misuse and espionage, as well as the manipulation of transaction or production data in the context of subscription transactions are particularly high risks. Complementary to direct and obvious consequences such as loss of production, the attacks are increasingly shifting to non-transparent and creeping impairments of production or product quality, which are only apparent at a late stage, or the influencing of payment flows. A transparent presentation of possible risks and their scope, as well as their interrelationships, does not exist. This paper shows a research approach in which the structure of subscription models and their different manifestations based on their risks and vulnerabilities are characterized. This allows suitable cyber security measures to be taken at an early stage. From this basis, companies can secure existing or planned subscription business models and thus strengthen the trust of business partners and customers.
Industry 4.0 and Smart Maintenance represent a great opportunity to make manufacturing and maintenance more effective, safer, and reliable. However, they also represent massive change and corresponding challenges for industrial companies, as many different options and starting points have to be weighed and the individual right paths for achieving Smart Maintenance need to be identified. In our paper, we describe our approach to evaluating maintenance organizations in a case study for the oil and gas industry, developing a shared vision for the future, and deriving economical and effective measures. We will demonstrate our approach, by showcasing a specific example from the oil and gas industry, where a need for action on HSE-relevant critical flanges in the company's piping systems was identified. We describe the steps, that were taken to identify the need for action, the specifications of the project and the criticality analysis of the piping system. This resulted in the derivation of a digitalization measure for critical flanges, which was first commercially analyzed and then the flanges were equipped with a continuous monitoring solution. Finally, a conclusion is drawn on the performed procedure and the achieved improvements.
Subscription business transforms traditional business models of machinery and plant engineering. Many manufacturing companies struggle to pull out the potential created by Industry 4.0 and make it economically usable. In addition to technological innovations, it is necessary to transform the business model. This leads to a shift from ownership-based and product-centric business models to outcome-based business models, which focus on the customer's value and thus realize a unique value proposition and competitive advantage – the outcome economy. Based on a case study analysis among manufacturing companies, this paper provides further clarification including a definition and constituent characteristics of subscription business models in machinery and plant engineering.