Refine
Document Type
- Conference Proceeding (18)
- Contribution to a Periodical (15)
- Part of a Book (11)
- Book (5)
- Working Paper (5)
- Report (4)
- Article (3)
- Doctoral Thesis (1)
- Lecture (1)
- Internet Paper (1)
Is part of the Bibliography
- no (64)
Keywords
- 5G (1)
- ADAM (3)
- Abschlussbericht (1)
- Anforderungen (1)
- Anforderungserhebung (1)
- Anforderungsermittlung (1)
- Anforderungsmanagement (1)
- Ausbildung (1)
- Automobilindustrie (1)
- Autonome Elektromobilität (1)
Institute
Die vorliegende Publikation beinhaltet die Projektergebnisse des Forschungsprojekts „FlAixEnergy – Innovative Energieflexibilitätsplattform zur Synchronisation und Vermarktung des regionalen Stromverbrauchs industrieller Anwender mit dezentraler Energieerzeugung in der Modellregion Aachen“ (Förderkennzeichen 0325819A-I). Dieses Forschungs- und Entwicklungsprojekt wurde mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) gefördert und vom Projektträger Jülich (PTJ) betreut. Die Autoren sind für den Inhalt der Veröffentlichung verantwortlich.
Smart Service Prototyping
(2021)
This chapter is dedicated to prototyping, one of the steps of the Smart Service Engineering Cycle. It includes three phases: realizing core functionalities, developing core functionalities, and testing functionalities with customers. In order to realize prototypes successfully, methodical aspects of rapid IoT prototyping are used.
First of all, this chapter explains the motivation behind rapid prototyping and provides an introduction to the approach. The concept of rapid IoT prototyping is based on the idea of developing short-cycle solution variants on the basis of benefit hypotheses or benefit promises and user stories focusing on them. The aim is to achieve data acquisition, aggregation, linkage, processing, and finally visualization by developing it in a vertically integrated manner. Once this is accomplished, the prototype can be evaluated with customers, which also makes it possible to put the benefit hypotheses to the test. Finally, the collected customer feedback can be incorporated more quickly into the development process of new prototype versions, leading to a continuous improvement of the user experience as well as a constant focus on prioritizing the user. Another component of rapid IoT prototyping is working and thinking in terms of minimum viable products (MVP), i.e., solutions that do not meet all of the defined requirements in the first iteration, but are nevertheless already functional. [https://link.springer.com/chapter/10.1007/978-3-030-58182-4_6]
Elektrische Fahrzeuge im Flottenverbund eröffnen durch die Einbindung in das öffentliche Stromnetz große Wertschöpfungspotentiale durch das Erbringen von Energiedienstleistungen. Dieser radikale Wandel zwingt Original Equipment Manufacturer (OEM) zur Untersuchung neuer Geschäftsfelder und der Schaffung ganzheitlicher Mobilitätskonzepte. Um diesen disruptiven Veränderungen gerecht zu werden, liegt der Fokus der vorliegenden Untersuchung auf der Entwicklung einer allgemeingültigen Bewertungssystematik für Elemente eines erweiterten Dienstleistungsportfolios für konkrete Anwendungsfälle von EV (Electric Vehicle)-Flottenbetreibern.
Energieflexibilität stellt eine mögliche Lösung dar, um die Herausforderungen der steigenden Volatilität in den Versorgungsnetzen in Deutschland zu beherrschen. Die Bundesregierung gibt den Weg vor: Die Energieversorgung Deutschlands wird in Zukunft verstärkt bis ganzheitlich durch erneuerbaren Energien gedeckt werden. Heute gibt es jedoch wenige innovative Energiedienstleistungen, die dieses Ziel verfolgen und die beschriebene Herausforderung in Zukunft beherrschbar machen.
Im Projekt "FlAixEnergy" wird eine Roadmap innovativer Energiedienstleistungen entwickelt. Diese zeigt auf, welche Smarten Services derzeit im Markt fehlen und in Zukunft erforderlich werden. Das Projekt wird mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) gefördert.
In order to introduce load management in the manufacturing industry, some obstacles need to be pointed out. This paper presents a feasible approach on how to implement load management measures in companies. To do so, load management and energy management are explained and distinguished in a first step. Subsequently, the implementation method is introduced. Therefore, by using this paper, companies will be enabled to use load management measure and reduce their energy costs significantly.
The manufacturing industry has to exploit trends like “Industrie 4.0” and digitization not only to design production more efficiently, but also to create and develop new and innovative business models. New business models ensure that even SMEs are able to open up new markets and canvass new customers. This means that in order to stay competitive, SMEs must transform their existing business models.
The creation of new business models require smart products. The required data base for new business models cannot be provided by SMEs alone, whereas smart products are able to provide a foundation, given the creation of smart data and smart services they enable. These services then expand functions and functionality of smart products and define new business models.
However, the development of smart products by small and medium-sized enterprises is still lined with obstacles. Regarding the product development process the inclusion of smart products means that new and SME-unknown domains diffuse during the process. Although there are many models regarding this process there appears to be a substantial lack of taking into account the competencies enabled by the implementation of digital technologies. Hence, several SME-supporting approaches fail to address the two major challenges these enterprises are faced with. This paper generally describes valid objectives containing relevant stakeholders and their allocation to the phases of the product life cycle.
Within each objective the potential benefit for customers and producers is analyzed. The model given in this paper helps SMEs in defining the initiation of a product development project more precisely and hence also eases project scoping and targeting for the smartification of an already existing product.
In order to introduce load management in the manufacturing industry, some obstacles need to be pointed out. This paper presents a feasible approach on how to implement load management measures in companies.
To this end, load management and energy management are explained and distinguished in a first step. Subsequently, the implementation method is introduced. Therefore, by means of this paper, companies will be enabled to use load management measures and significantly reduce their energy costs. In the second part of the paper, the introduced approach will be applied.
Hence, a use case of a manufacturing company is described. Alongside energy analyses with consumption data, specific measures are presented.
Da die heutigen Logistiknetzwerke den Anforderungen nicht mehr gerecht werden, rückt das Supply-Chain-Risk-Management von Wertschöfungsketten zunehmend in den Mittelpunkt unternehmerischer Überlegungen. Störungen in Logistiknetzwerken treten wegen unzureichender Datenmengen, -qualität und -integration der realen Welt nicht in den Informationssystemen auf. Eine echtzeitfähige Reaktion auf diese Störungen und proaktive Korrekturmaßnahmen innerhalb der Logistikprozesse sind folglich unmöglich. Daher kann ein erhöhter Bedarf an ganzheitlicher Transparenz innnerhalb der Logistiknetzwerke abgeleitet werden. Mit diesem Thema beschäftigt sich das Forschungsprojekt Smart-Logistic-Grids.
Bereits Angriffe auf einzelne Unternehmen in der Supply-Chain können eine Kettenreaktion auslösen, die ein ganzes Netz von Partnern gefährden kann. Dieselben Informations- und Kommunikationstechnologien, die einen enormen Beitrag zur Produktivität sowie nationalen und globalen Wettbewerbsfähigkeit von Zuliefernden leisten, vergrößern heute für Unternehmen die mögliche Bedrohungslandschaft. Prominente Ransomware-Angriffe auf die Reederei Maersk und auf den Anbieter für IT-Management-Lösungen Kaseya haben gezeigt, wie anfällig Lieferketten für Cyberkriminelle sind und zu welchen massiven finanziellen Schäden diese führen können. Als Reaktion auf die COVID-19-Pandemie haben viele Unternehmen massiv in ihre digitale Transformation und somit auch in die Digitalisierung der Lieferketten investiert. Dadurch sind Unternehmen nicht nur attraktivere Ziele für Cyberangriffe geworden, sondern bieten den Angreifern mit der digitalisierten Supply-Chain auch einen vielversprechenden neuen Angriffsweg. Derartige Supply-Chain-Attacken greifen ein oder mehrere Unternehmen an und dienen so als trojanisches Pferd, um in letzter Konsequenz ganze Wertschöpfungsnetzwerke zu infiltrieren. Da die Auswirkungen von Angriffen auf die Versorgungsketten zahlreicher Unternehmen nahezu unbegrenzt sind, können Supply-Chain-Attacken nicht als ein isoliertes Problem behandelt werden. Vielmehr müssen diese innerhalb einer ganzheitlichen Cyber-Security-Strategie sowohl beim Zulieferer als auch bei dessen Partnerunternehmen Berücksichtigung finden, um den vielschichtigen Bedrohungen präventiv begegnen zu können. Der folgende Beitrag versteht sich als Überblick bezüglich der aktuellen Bedrohungslandschaft im Bereich Logistik 4.0 und Supply-Chain-Management sowie der möglichen Reaktionsmaßnahmen.
Manufacturing companies face the challenge of selecting digitalization measures that fit their strategy. Measures that are initiated and not aligned with the company’s strategy carry the risk of failing due to lack of relevance. This leads to an ineffective use of scarce human and financial resources. This paper presents a target system to help companies select relevant digitalization measures compliant with their strategy for IT-OT-integration projects. The target system was developed based on literature research and expert interviews, and later validated in two use cases. The target system considers the goals of production companies and combines them with digitalization measures. The measures are classified by different maturity levels required for their realization. Thus, the target system enables manufacturing companies to evaluate digitalization measures with regards to their strategic relevance and the required Industrie 4.0 maturity level for their realization. This ensures an effective use of resources.