Refine
Document Type
- Part of a Book (7)
- Conference Proceeding (16)
- Contribution to a Periodical (8)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Internet Paper (2)
- Report (3)
- Working Paper (6)
Language
- German (22)
- English (20)
- Multiple languages (2)
Is part of the Bibliography
- no (44)
Keywords
- 01 (2)
- 02 (8)
- 03 (3)
- AI (1)
- AR-Format (1)
- AR-Plattform (1)
- AR-Technologie (1)
- Additive manufacturing (1)
- After-Sales-Services (1)
- Artificial intelligence (1)
Institute
Projekt ‚Future Data Assets‘: Reporting der unternehmerischen Fähigkeit der Datenbewirtschaftung
(2020)
„Daten sind das neue Öl.“ Ein vielfach genutzter Ausdruck, der die Relevanz und den Wert von Daten im digi- talen Zeitalter unterstreicht. Allerdings existiert derzeit noch kein standardisiertes Verfahren, um den Wert von Daten explizit zu bemessen. Traditionelle marktpreis-, kosten- und nutzenbasierte Bewertungsmethoden kommen bei der Anwendung im Datenkontext schnell an ihre Grenzen. Das Forschungsprojekt ‚Future Data Assets‘ hat zum Ziel, neue Möglichkeiten der Datenbewertung zu erforschen. Im Fokus der Untersuchungen stehen insbesondere produzierende Unternehmen, die zunehmend Daten wertschöpfend einsetzen, jedoch vor zahlreichen Herausforderungen in der externen und internen Kommunikation ihres Datenkapitals stehen. Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Wirtschaft und Energie unter dem Förderkennzeichen 01MD19010B gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.
The additive manufacturing technique of "Selective Laser Melting" (SLM) provides the basis for a fundamental paradigm shift in industrial spare part manufacturing, affecting both technological and organizational company prac-tices. To harness the full potential of SLM-technology, considering agility and customizability, decentralized additive production networks need to be estab-lished. According to the principles just in time, just in place and just enough, a global online platform, which efficiently distributes construction orders to local manufacturing hubs could empower the market participants to utilize production capacities at optimal costs and minimal efforts. This work evaluates and selects key factors and creates scenarios for the development of platform-based networks for additive, SLM-based, spare part production. For this purpose, the selected key factors (e. g. material expenses, quality and process management and platform-based business models) are projected into the future, forming the three major scenarios "New distribution of roles in the SLM value chain", "SLM-technology for high wage countries" and "Individualization instead of mass production". These scenarios not only allow estimating the potential of an online network for additive spare part production, but also enable market participants to react pur-posively and agilely to unexpected market developments, and to foster the suc-cess of a platform-based additive spare part production.
Das Projekt LBM²-Load Based Monitoring and Maintenance erforschte die Einsatzfähigkeit einer kostengünstigen Lastsensorik zur Messung und Analyse von Restlebensdauerdaten für Großkomponenten an Windenergieanalgen (WEA). Da aktuell im Einsatz befindliche Condition-Monitoring-Systeme zur Überwachung von WEA oft teuer in der Anschaffung sind und lediglich vergangenheitsorientierte Informationen liefern, sobald ein kritischer Zustand bereits eingetreten ist, besteht der Bedarf insbesondere für KMU in der WEA-Branche für eine kostengünstige, proaktive Alternative. Hierzu wird im Projekt LBM² der Einsatz einer kostengünstigen, auf Dehnungsmessstreifen basierenden Messtechnologie erforscht, die über einen langen Zeitraum in einem Testwindpark betrieben wird. Die Erkenntnisse zu den Herausforderungen in der Spezifikation der Messtechnologie für den WEA-Typ sowie in der kontinuierlichen Datenerfassung und –auswertung adressieren ein aktuell hochrelevantes Themenfeld. Die Implikationen der Erkenntnisse gehen damit weit über die Branche der Windenergie hinaus. Mittels der gewonnenen Daten über die Lasten bzw. Restlebensdauern von Großkomponenten der WEA (z.B. Getriebe, Hauptwelle oder Hauptlager) wurden zudem deren Einsatzpotenziale für eine proaktivere, vorausschauende Instandhaltung von WEA untersucht. Die Instandhaltung ist der Hauptkostentreiber im Betrieb einer WEA und bietet demnach großes Potenzial für einen kosteneffizienteren Betrieb, der speziell für KMU in einem umkämpften Strommarkt mit wegfallenden EEG-Zulagen notwendig ist. Hierzu wurden im Projekt LBM² Instandhaltungsprozesse für WEA-Großkomponenten aufgenommen. Diese wurden in einer Simulationsumgebung hinsichtlich verschiedener, kosteneffizienter Instandhaltungsstrategien untersucht. Dazu wurde der Einfluss von Restlebensdauern auf spezifische Instandhaltungsstrategien abgebildet. Weiterhin wurden die Projektergebnisse in einen Softwaredemonstrator überführt, der den Anwendern und speziell KMU eine Möglichkeit an die Hand gibt, die Daten der kostengünstigen Lastsensorik in Zukunft übersichtlich visualisiert und mit relevanten Handlungsempfehlungen für eine optimierte Instandhaltung hinterlegt zu nutzen.
Ziel des Forschungsprojekts 'LBM²' ist die Entwicklung eines kostengünstigen und leicht zu bedienenden Überwachungssystems für Windenergieanlagen (WEA). Mittels Lasterfassung durch Drehmomentsensoren und der darauf basierenden Ermittlung von Restlebensdauern sollen der Betrieb und die Instandhaltungsplanung des gesamten Windparks (WP) optimiert werden. Dazu wurde in Zusammenarbeit mit einem Sensorhersteller eine Technik zur Messung der realen Lasten an der Hauptwelle für die Applikation in einem Windpark des Projektpartners Innogy SE entwickelt. Parallel wurden Instandhaltungstätigkeiten im Windpark erfasst, prozessual abgebildet und wesentliche Kostentreiber identifiziert. Die Bearbeitung des Projekts erfolgt gemeinsamen durch das Center for Wind Power Drives (CWD) aus Aachen und den FIR e. V. an der RWTH Aachen. Das IGF-Vorhaben 20028 N der Forschungsvereinigung FIR e. V. an der RWTH Aachen, Campus-Boulevard 55, 52074 Aachen wird über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energien aufgrund eines Beschlusses des Deutschen Bundestages gefördert.
Im durch das Bundesministerium für Wirtschaft und Energie (BMWi) geförderten Forschungsprojekt 'EVAREST' untersucht der FIR e. V. an der RWTH Aachen zusammen mit Projektpartnern wie dem Deutschen Forschungszentrum für Künstliche Intelligenz(DFKI) und dem Schokoladenhersteller Lindt & Sprüngli Deutschland GmbH die Chancen durch Digitalisierung in der Lebensmittelindustrie. Mit der Betrachtung von Daten als eigenständigem Wirtschaftsgut wird eine neue Form der Datenökonomie erforscht,in der ein monetärer Handel mit Datenprodukten ermöglicht wird. Die technische Umsetzung erfolgt u. a. durch die beteiligten Projektpartner Software AG und DFKI in Form eines offenen IoT-Plattform-Ansatzes. Die Erforschung der Rechtssicherheit im Handel mit Datenprodukten ist ebenfalls Bestandteil des Projekts und wird durch die Universität des Saarlandes abgebildet. Das Forschungsprojekt 'EVAREST' wird vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen
Bundestages gefördert.
Das Dienstleistungsgeschäft gehört bereits seit einigen Jahren zum zentralen Wachstumstreiber vieler Unternehmen in Deutschland. Auch kleine und mittlere Unternehmen (KMU) des Maschinenbaus haben diesen Trend erkannt und sind bestrebt, ihr Leistungsangebot hinsichtlich After-Sales-Services (AS-Services) auszubauen. Dabei stoßen sie allerdings immer wieder an Kapazitätsgrenzen. Das vorhandene und hochqualifizierte Personal ist häufig bereits voll ausgelastet, während der Mangel an Fachkräften ein geeignetes Gegensteuern erschwert. Somit beschränken die Ressourcenengpässe KMU des Maschinenbaus, ihr eigenes Geschäft mit AS-Services auszubauen.
Digitale Technologien bieten in diesem Zusammenhang das Potenzial, diesen Engpässen entgegenzuwirken, indem die vorhandenen Ressourcen effizienter eingesetzt werden. Ein prominentes Beispiel hierfür ist der Einsatz von Datenbrillen im Bereich des Remote-Service. Statt dass ein Servicetechniker gezwungen ist, wegen einer Maschinenstörung zum Kunden zu fahren, können die Diagnose und auch einfache Maßnahmen zur Störungsbehebung vom Kunden selber vor Ort durchgeführt werden, während der Servicetechniker mittels Datenbrille live zugeschaltet ist und anleiten kann. Dadurch können Reisezeiten, in den der Servicetechniker üblicherweise nicht wertschöpfend tätig ist, reduziert und im besten Fall mehr Serviceaufträge pro Servicemitarbeiter bearbeitet werden.
Im Zuge der fortschreitenden digitalen Vernetzung durch Industrie 4.0 sind in den letzten Jahren viele digitale Technologien entwickelt und zur Marktreife gebracht worden. Die große Vielfalt dieser technischen Lösungen macht es insbesondere KMU mit ihren ohnehin schon begrenzten Ressourcen fast unmöglich, einen angemessenen Überblick zu behalten. Zusätzlich können Verantwortliche und Fachkräfte der KMU nur schwer beurteilen, welche digitale Technologie sich für ihre unternehmensspezifischen Anforderungen überhaupt eignet. Eine Bewertung, die eine technologieübergreifende Vergleichbarkeit ermöglichen würde, fehlt. Genau hier setzt das erste Modul des Digitalisierungsnavigators an, der als Demonstrator auf dem AiF Forschungsprojekt ScaleUp entstanden ist.
Das Ziel des Forschungsprojekts "Future Data Assets" bestand in der monetären Bewertung des unternehmerischen Datenkapitals. Dazu wurden die Entwicklung und Instanziierung einer sogenannten "Datenbilanz" angestrebt. Die Datenbilanz soll dem Reporting der unternehmerischen Fähigkeit der Datenbewirtschaftung dienen und damit eine Lücke im Hinblick auf die klassische Berichterstattung schließen, in der Daten kaum betrachtet bzw. systematisch bewertet werden.
The mechanical and plant engineering industry faces a stagnation in the new machinery market and is relying on innovative business models such as subscription to overcome these. In this business model, individually customized solution packages are offered. The success of these models depends directly on the future success of the customer, making the selection of the right customers crucial. The aim of this paper is to identify the criteria that indicate the suitability of customers for subscription models. While there are individual descriptions of suitability criteria in the existing literature, there is a lack of comprehensive consideration of customer relationship, customer company, and customer market, as the extensive consideration was not necessary in the transactional sale of machines until now. Therefore, in this study, expert interviews are conducted with companies in mechanical and plant engineering that offer subscription models. The results show criteria that are used to evaluate customers in the six main categories of creditworthiness, market potential, benefit potential, feasibility, relationship, and sales effort. In total, 24 criteria can provide insight into the suitability of the customer for a successful subscription relationship. These criteria are intended to develop target systems that meet the requirements of different stakeholders in the customer and thus support the economic viability of these business models.
Ziel des Forschungsprojekts ‚DM4AR‘ war es, Servicewissen skalierbar und einfach nutzbar zu machen, indem automatisch Augmented-Reality-Inhalte aus verschiedenen Datenquellen generiert werden.
Nutzen für die Zielgruppe:
Durch die Ergebnisse des Projekts ‚DM4AR‘ kann zukünftig die wesentliche Barriere für die flächendeckende und produktive Nutzung der AR-Technologie durch die Etablierung eines plattformbasierten und automatisierten Ansatzes zur Datenaufbereitung überwunden werden. Dabei steht die einfache Integration in den operativen Serviceprozess im Vordergrund, um den Nutzen zu maximieren und die Umstellung der Serviceprozesse zu vereinfachen. Die ‚DM4AR‘-Ergebnisse ermöglichen somit die Sicherung und den gezielten Einsatz des im Unternehmen vorhandenen Wissens.