Refine
Document Type
- Conference Proceeding (16)
- Contribution to a Periodical (8)
- Working Paper (8)
- Part of a Book (7)
- Report (3)
- Internet Paper (2)
- Doctoral Thesis (1)
- Master's Thesis (1)
Language
- German (24)
- English (20)
- Multiple languages (2)
Is part of the Bibliography
- no (46)
Keywords
- 01 (2)
- 02 (8)
- 03 (3)
- AI (1)
- AR-Format (1)
- AR-Plattform (1)
- AR-Technologie (1)
- Additive manufacturing (1)
- After-Sales-Services (1)
- Artificial intelligence (1)
Institute
Das Dienstleistungsgeschäft gehört bereits seit einigen Jahren zum zentralen Wachstumstreiber vieler Unternehmen in Deutschland. Auch kleine und mittlere Unternehmen (KMU) des Maschinenbaus haben diesen Trend erkannt und sind bestrebt, ihr Leistungsangebot hinsichtlich After-Sales-Services (AS-Services) auszubauen. Dabei stoßen sie allerdings immer wieder an Kapazitätsgrenzen. Das vorhandene und hochqualifizierte Personal ist häufig bereits voll ausgelastet, während der Mangel an Fachkräften ein geeignetes Gegensteuern erschwert. Somit beschränken die Ressourcenengpässe KMU des Maschinenbaus, ihr eigenes Geschäft mit AS-Services auszubauen.
Digitale Technologien bieten in diesem Zusammenhang das Potenzial, diesen Engpässen entgegenzuwirken, indem die vorhandenen Ressourcen effizienter eingesetzt werden. Ein prominentes Beispiel hierfür ist der Einsatz von Datenbrillen im Bereich des Remote-Service. Statt dass ein Servicetechniker gezwungen ist, wegen einer Maschinenstörung zum Kunden zu fahren, können die Diagnose und auch einfache Maßnahmen zur Störungsbehebung vom Kunden selber vor Ort durchgeführt werden, während der Servicetechniker mittels Datenbrille live zugeschaltet ist und anleiten kann. Dadurch können Reisezeiten, in den der Servicetechniker üblicherweise nicht wertschöpfend tätig ist, reduziert und im besten Fall mehr Serviceaufträge pro Servicemitarbeiter bearbeitet werden.
Im Zuge der fortschreitenden digitalen Vernetzung durch Industrie 4.0 sind in den letzten Jahren viele digitale Technologien entwickelt und zur Marktreife gebracht worden. Die große Vielfalt dieser technischen Lösungen macht es insbesondere KMU mit ihren ohnehin schon begrenzten Ressourcen fast unmöglich, einen angemessenen Überblick zu behalten. Zusätzlich können Verantwortliche und Fachkräfte der KMU nur schwer beurteilen, welche digitale Technologie sich für ihre unternehmensspezifischen Anforderungen überhaupt eignet. Eine Bewertung, die eine technologieübergreifende Vergleichbarkeit ermöglichen würde, fehlt. Genau hier setzt das erste Modul des Digitalisierungsnavigators an, der als Demonstrator auf dem AiF Forschungsprojekt ScaleUp entstanden ist.
In Germany’s transition to a more sustainable industrial landscape, electricity generated by wind turbines (WT) remains a mainstay of the energy mix. Operating and maintenance costs, which account for roughly 25% of electricity generation costs in onshore WTs make improvements of maintenance activities a key lever in the economic operation of WTs. Prescriptive maintenance is a possible approach for improved maintenance activities. It is a concept where asset condition data is used to recommend specific actions and has great potential for the operation of wind parks. However, especially small, but also large wind park operators, and maintenance service providers often struggle with the implementation of such a new maintenance approach. As a part of the research project ReStroK, a learning game has been developed to support the training and familiarization of maintenance technicians with the concepts and underlying principles of this maintenance approach. In this paper, the concept for the development of a learning game will be presented. Multiple scenarios for its usage and their corresponding requirements will be discussed and an overview over the game will be given.
Subscription business models provide an important component for monetizing the potential of Industrie 4.0. Subscription business is based on a long-term and participative business relationship between customer and provider. However, only digitalization offers the necessary framework conditions to realize the characteristic recurring and performance-based billing, and to ensure the necessary transparency about the usage phase of products as well as continuous performance improvements in the customer process. Against this background, companies must not only recognize the much-cited potential that lies in the total dedication to the success of individual subscription customers. Rather, the central obstacles must be addressed, examined, and subsequently overcome in a targeted manner in order to successfully establish subscription business models and place them on the market.
The additive manufacturing technique of "Selective Laser Melting" (SLM) provides the basis for a fundamental paradigm shift in industrial spare part manufacturing, affecting both technological and organizational company prac-tices. To harness the full potential of SLM-technology, considering agility and customizability, decentralized additive production networks need to be estab-lished. According to the principles just in time, just in place and just enough, a global online platform, which efficiently distributes construction orders to local manufacturing hubs could empower the market participants to utilize production capacities at optimal costs and minimal efforts. This work evaluates and selects key factors and creates scenarios for the development of platform-based networks for additive, SLM-based, spare part production. For this purpose, the selected key factors (e. g. material expenses, quality and process management and platform-based business models) are projected into the future, forming the three major scenarios "New distribution of roles in the SLM value chain", "SLM-technology for high wage countries" and "Individualization instead of mass production". These scenarios not only allow estimating the potential of an online network for additive spare part production, but also enable market participants to react pur-posively and agilely to unexpected market developments, and to foster the suc-cess of a platform-based additive spare part production.
Eine Steigerung des Wertbeitrags der Instandhaltung kann nur im Zusammenspiel mit der Belegschaft sowie internen und externen Anspruchsgruppen geschehen.
Dabei bieten digitale Technologien eine Möglichkeit, Prozesse und Entscheidungen punktuell effizienter und besser zu machen. Eine nachhaltige Transformation muss jedoch nicht nur technologisch, sondern vor allem auch methodisch gestaltet werden.
Dabei müssen bewährte Methoden der zuverlässigkeitsorientierten
Instandhaltung und des Lean Managements mit den digitalen Technologien zusammenspielen, um den größtmöglichen Effekt für das Unternehmen zu erzielen.
Maschinen- und Anlagenbauer setzen sich in Ergänzung zum klassischen Verkauf von Produkten und Services zunehmend mit sog. Subskriptionsgeschäftsmodellen auseinander. Ertragsmechaniken wie Pay-per-Use oder Pay-per-Outcome, ein auf den individuellen Kundenerfolg ausgerichtetes Nutzenversprechen, digitale und über das Internet of Things vernetzte Leistungssysteme, bestehend aus Produkten, Services und Software, sowie eine langfristig orientierte, partnerschaftliche Kundenbeziehung sind Voraussetzungen und charakteristische Merkmale von Subskriptionsgeschäften. Da der Anbietererfolg im Subskriptionsgeschäft in direkter Abhängigkeit zum Kundenerfolg steht, erfordert das Subskriptionsgeschäft den Auf- und Ausbau eines sog. Customer-Success-Managements (CSM). Das CSM ist im Gegensatz zum Vertrieb oder Service vollständig auf den Erfolg, d. h. die Zielerreichung der individuellen Subskriptionskunden, ausgerichtet und incentiviert. Das CSM überwacht die Nutzungsphase der Produkte und Services und unterstützt die Subskriptionskunden proaktiv bei der Erreichung und Steigerung ihrer individuellen Ziele. Während das CSM in der Softwareindustrie bereits seit einigen Jahren etabliert ist, befinden sich Unternehmen im Maschinen- und Anlagenbau vielfach noch in der Konzeptionierungsphase eines CSMs. Das Ziel dieser Dissertationsschrift besteht daher darin, ein konfigurierbares Referenzmodell für das CSM im Maschinen- und Anlagenbau zu entwickeln, das Unternehmen bei der unternehmensspezifischen Ableitung eines CSM-Modells entlang ausgewählter Konfigurationsparameter unterstützt. Mit dem Referenzmodell soll vor allem die Effizienz bei der Gestaltung der CSM-Ablauforganisation gesteigert werden. Auf Basis einer spezifizierten Vorgehensweise zur konfigurativen Referenzmodellierung werden in dieser Dissertationsschrift zunächst Konfigurationsparameter für das CSM-Referenzmodell hergeleitet. Anschließend erfolgt der Entwurf des Ordnungsrahmens, der als übergeordneter Einstieg in das CSM-Referenzmodell dient.
Daraufhin werden sowohl ein Daten- als auch ein Funktionsmodell entwickelt, um die zahlreichen, notwendigen Datenpunkte und Aufgaben im CSM systematisch abzubilden. Die beiden Modelle werden im Anschluss über 17 modular gestaltete Prozessmodelle integriert. Das Referenzmodell wird abschließend zur Güteprüfung in drei ausgewählten
Fallstudien mit Unternehmen des Maschinen- und Anlagenbaus wiederverwendet und evaluiert.
Today, however, agility is seen more than ever as a critical success factor for companies. In times of an increasing degree of digital interconnection and minimum viable products, a mentality is entering the industrial service sector that has so far only been exemplified by Internet companies (e.g. Google): New products and especially digital services are developed in highly iterative processes. To this end, customers are involved in early test phases of development and provide feedback on individual functional modules, which – in contrast to the previous approach – are only gradually assembled into a market-ready “100 percent version”. But especially with the development of new digital services, companies must ensure more than ever that both the existing analog service business and the design of new digital services are geared to effectiveness and efficiency in order to meet the growing demands of customers and competitors.
To achieve this, companies must not only be familiar with the products currently on the market, but also master the entire product history, which in some cases goes back more than 30 years and varies greatly from one industry to another.
Ein Subscription-Geschäftsmodell – das klingt nach maßgeblichen wirtschaftlichen Vorteilen. Daher stellt sich die Frage: Warum haben bisher noch nicht alle produzierenden Unternehmen diese Art der partizipativen Geschäftsmodelle aufgebaut?
Die Antwort: Der Aufbau und die Umsetzung von Subscription-Geschäftsmodellen gehen einher mit zentralen Herausforderungen, die Unternehmen im Zuge einer Geschäftsmodelltransformation bewältigen müssen. Hierbei hilft dieses Expert-Paper.
A subscription business model - that sounds like significant economic advantages. Therefore, the question arises: Why haven't all manufacturing companies established this type of participative business model yet?
The answer: The development and implementation of subscription business models go hand in hand with central challenges that companies have to overcome in the course of a business model transformation. This expert paper helps with this.
Das Projekt LBM²-Load Based Monitoring and Maintenance erforschte die Einsatzfähigkeit einer kostengünstigen Lastsensorik zur Messung und Analyse von Restlebensdauerdaten für Großkomponenten an Windenergieanalgen (WEA). Da aktuell im Einsatz befindliche Condition-Monitoring-Systeme zur Überwachung von WEA oft teuer in der Anschaffung sind und lediglich vergangenheitsorientierte Informationen liefern, sobald ein kritischer Zustand bereits eingetreten ist, besteht der Bedarf insbesondere für KMU in der WEA-Branche für eine kostengünstige, proaktive Alternative. Hierzu wird im Projekt LBM² der Einsatz einer kostengünstigen, auf Dehnungsmessstreifen basierenden Messtechnologie erforscht, die über einen langen Zeitraum in einem Testwindpark betrieben wird. Die Erkenntnisse zu den Herausforderungen in der Spezifikation der Messtechnologie für den WEA-Typ sowie in der kontinuierlichen Datenerfassung und –auswertung adressieren ein aktuell hochrelevantes Themenfeld. Die Implikationen der Erkenntnisse gehen damit weit über die Branche der Windenergie hinaus. Mittels der gewonnenen Daten über die Lasten bzw. Restlebensdauern von Großkomponenten der WEA (z.B. Getriebe, Hauptwelle oder Hauptlager) wurden zudem deren Einsatzpotenziale für eine proaktivere, vorausschauende Instandhaltung von WEA untersucht. Die Instandhaltung ist der Hauptkostentreiber im Betrieb einer WEA und bietet demnach großes Potenzial für einen kosteneffizienteren Betrieb, der speziell für KMU in einem umkämpften Strommarkt mit wegfallenden EEG-Zulagen notwendig ist. Hierzu wurden im Projekt LBM² Instandhaltungsprozesse für WEA-Großkomponenten aufgenommen. Diese wurden in einer Simulationsumgebung hinsichtlich verschiedener, kosteneffizienter Instandhaltungsstrategien untersucht. Dazu wurde der Einfluss von Restlebensdauern auf spezifische Instandhaltungsstrategien abgebildet. Weiterhin wurden die Projektergebnisse in einen Softwaredemonstrator überführt, der den Anwendern und speziell KMU eine Möglichkeit an die Hand gibt, die Daten der kostengünstigen Lastsensorik in Zukunft übersichtlich visualisiert und mit relevanten Handlungsempfehlungen für eine optimierte Instandhaltung hinterlegt zu nutzen.