Refine
Document Type
- Contribution to a Periodical (9)
- Conference Proceeding (4)
- Part of a Book (2)
- Working Paper (2)
- Article (1)
- Book (1)
- Doctoral Thesis (1)
- Report (1)
Language
- German (14)
- English (6)
- Multiple languages (1)
Is part of the Bibliography
- no (21)
Keywords
- 02 (1)
- 3-Phasen-Konzept (1)
- Agil (1)
- Artificial intelligence (1)
- Auswahl von IT-Systemen (1)
- Business Software (1)
- Data Lakes (1)
- Datenintegration (1)
- Decision Support System (1)
- Deviation detection (1)
Institute
Unternehmen sind mit einem zunehmend dynamischen Marktumfeld und komplexen Wertschöpfungsbeziehungen konfrontiert. Von besonderer Bedeutung ist die Sicherstellung effizienter und flexibler Prozesse und Abläufe entlang der gesamten Supply-Chain. Gerade im zwischenbetrieblichen Kontext müssen Entscheidungen möglichst schnell und richtig getroffen werden. Die Grundlagen für eine optimierte Entscheidungsfindung stellen die durchgängige Erfassung, Aufbereitung und gezielte Bereitstellung von Daten dar. Derzeit mangelt es innerhalb der Supply-Chains jedoch oft an der notwendigen Transparenz. In diesem Beitrag wird ein Konzept für ein Assistenzsystem zur Entscheidungsunterstützung auf Supply-Chain-Ebene vorgestellt.
Die digitale Vernetzung der Wirtschaft, insbesondere im Hinblick auf hochtransparente Informationsflüsse durch betriebliche Anwendungssysteme, schreitet stetig voran. Dabei stehen die Unternehmen bei der Bewertung der bestehenden produktionsnahen IT-Infrastruktur und der Auswahl eines zur Produktionsumgebung passenden ME-Systems vor einer komplexen, aber nicht unlösbaren Herausforderung. Die Einführung der richtigen Software hat dabei nicht nur Auswirkungen auf den Produktionsprozess, sondern auch auf Themen wie die Feinplanung, das Instandhaltungs- sowie das fertigungsbegleitende Qualitätsmanagement. Um die dabei entstehenden Investitionskosten und Wartungs- bzw. Betreuungskosten sowie den internen Personalaufwand für die Auswahl und die nachfolgende Implementierung gering zu halten, benötigen Unternehmen eine gezielte Vorgehensweise. Die Experten
des FIR helfen dabei, das passende System auszuwählen.
The shop floor is a dynamic environment, where disturbances to the production plan occur. While there are many tools to support production planning, production control is left unsupported in handling disruptions.The aim of the Cluster of Excellence is to develop an application to support the production controller in his decision process to identify and evaluate the right countermeasures. In this abstract, we present the concept for the application.
S. 133
Deutschland als Produktionsstandort befindet sich in einem revolutionären Wandel und sieht sich mit komplexen Anforderungen konfrontiert. Neben kurzen Lieferzeiten und günstigen Preisen fordert der Markt ständig differenziertere und qualitativ hochwertigere Produkte. Gleichzeitig steigt die Marktdynamik aufgrund der starken Kundenorientierung und der damit verbundenen Auftragsschwankungen. Dadurch nimmt die Komplexität von Koordination, Planung und Steuerung der betrieblichen Abläufe zu, wodurch Unternehmen oftmals an ihre Grenzen stoßen. Um den Kundenanforderungen dennoch gerecht zu werden, sehen Unternehmen die Digitalisierung als einen entscheidenden Faktor für den Unternehmenserfolg an. Jedoch stehen die Unternehmen vor der Herausforderung, jene im Rahmen von Industrie 4.0 erfolgreich in ihrem Unternehmen umzusetzen.
Manufacturing-Execution-Systeme (MES) bieten durch ihren Funktionsumfang eine gute Möglichkeit, die Digitalisierung des eigenen Produktionsbetriebes voranzutreiben. Die Auswahl, Beschaffung und Einführung von IT-Systemen stellen Unternehmen meist vor große Herausforderungen. In diesem Beitrag werden anhand des 3Phasen-Konzepts Herausforderungen sowohl in zeitlicher Abfolge als auch in Handlungsfelder strukturiert und beschrieben. Ziel ist es, Unternehmen zu befähigen, eine optimale Auswahl durchzuführen, um eine reibungslose und risikoarme Implementierung durchzuführen.
Immer flexibler und schneller auf sich ändernde Kundenwünsche reagieren zu können, ist das Ziel eines jeden produzierenden Unternehmens. Um dieses zu erreichen, müssen Daten aus dem Shop Floor nahezu in Echtzeit dem ERP-System zur Verfügung gestellt werden. Dabei kann die Datenintegration auf unterschiedlichen Wegen erfolgen: Data Lakes und MES sind zwei Beispiele mit unterschiedlichen Vor- und Nachteilen.
Die Bewertung der produktionsnahen IT-Infrastruktur und die Auswahl eines passenden ME-Systems stellen Unternehmen vor eine komplexe, aber nicht unlösbare Herausforderung. Die Einführung der Software hat dabei nicht nur Auswirkungen auf den Produktionsprozess, sondern auch auf die Feinplanung und das Qualitätsmanagement. Um die Investionskosten und den internen Personalaufwand für die Einführung gering zu halten, benötigt man eine gezielte Vorgehensweise zur Auswahl des Systems.
Task-Specific Decision Support Systems in Multi-Level Production Systems based on the digital shadow
(2019)
Due to the increasing spread of Information and Communication Technologies (ICT) suitable for shop floors, the production environment can more easily be digitally connected to the various decision making levels of a production system. This connectivity as well as an increasing availability of high-resolution feedback data, can be used for decision support for all levels of the company and supply chain. To enable data driven decision support, different data sources were structured and linked. The data was combined in task-specific digital shadows, selecting clustering and aggregation rules to gain information. Visual interfaces for task-specific decision support systems (DSS) were developed and evaluated positively by domain experts. The complexity of decision making on different levels was successfully reduced as an effect of the processed amounts of data. These interfaces support decision making, but can additionally be improved if DSS are extended with smart agents as proposed in the Internet of Production.
Im Rahmen der digitalen Transformation und der damit verbundenen Gestaltung digitaler und durchgängiger Prozesse müssen Unternehmen häufig neue Business-Software auswählen und beschaffen. Sie modernisieren hierbei ihre in die Jahre gekommene Software oder führen eine zusätzliche ein. Häufig erfolgen Auswahl und Beschaffung mittels klassischer Projektmanagementmethoden, die im Kontrast zu den agilen Methoden während der Implementierung stehen. Dieser Beitrag zeigt, wie agile Methoden schon in der Auswahl genutzt werden, um einerseits den Einstieg in die Implementierung zu erleichtern und andererseits aktives, nutzerzentriertes Change-Management von der Auswahl bis zum Einsatz der Software ermöglichen. Sie sind daher von Beginn an ein wichtiger Baustein zur Sicherung des Projekterfolgs.
Aktuell ist noch nicht geklärt, wie sich das Zusammenwirken von Menschen und betrieblichen Anwendungssystemen bei der Bearbeitung der Aufgaben der PPS nach der Umsetzung von Industrie 4.0 entwickelt. Zur Systematisierung der Auswirkungen von Industrie 4.0 auf die PPS werden in diesem Beitrag die sechs Reifegradstufen des acatech Industrie-4.0-Maturity-Index mit der Aufgabensicht des Aachener PPS-Modells kombiniert und die Reifegradstufen für ausgewählte Unteraufgaben der PPS spezifiziert.