Refine
Document Type
- Part of a Book (3)
- Conference Proceeding (3)
Is part of the Bibliography
- no (6)
Keywords
- Data Profiling (1)
- Data Protection Laws (1)
- Decision Support System (1)
- Enterprise-Resource-Planning (1)
- Exzellenzcluster (1)
- Industrie 4.0 (1)
- Internet of Production (1)
- KMU (1)
- Konferenz (1)
- Kybernetik (1)
Institute
Task-Specific Decision Support Systems in Multi-Level Production Systems based on the digital shadow
(2019)
Due to the increasing spread of Information and Communication Technologies (ICT) suitable for shop floors, the production environment can more easily be digitally connected to the various decision making levels of a production system. This connectivity as well as an increasing availability of high-resolution feedback data, can be used for decision support for all levels of the company and supply chain. To enable data driven decision support, different data sources were structured and linked. The data was combined in task-specific digital shadows, selecting clustering and aggregation rules to gain information. Visual interfaces for task-specific decision support systems (DSS) were developed and evaluated positively by domain experts. The complexity of decision making on different levels was successfully reduced as an effect of the processed amounts of data. These interfaces support decision making, but can additionally be improved if DSS are extended with smart agents as proposed in the Internet of Production.
Die Digitalisierung hat weitreichende Konsequenzen für Unternehmen, neue Schnittstellen entstehen ebenso wie neue Risiken. Es fehlen Ansätze für die Transformation, die KMU auf ihrem Weg in eine Industrie 4.0 unterstützen. Das Ziel des Verbundprojektes SiTra4.0 ist es, die für die Digitalisierung notwendigen Veränderungen im Unternehmen zu identifizieren und einen Prozess zu etablieren, der durch eine präventiv wirksame Sicherheitskultur es KMU ermöglicht den Wandel zu gestalten. Das Projekt fokussiert zwei Industriezweige mit ihren spezifischen Herausforderungen: Metallverarbeitende Branche und Baubranche.
Human behavior in supply chains is insufficiently explored. Wrong decisions by decision makers leads to insufficient behavior and lower performance not only for the decision maker, but also for other stakeholders along the supply chain. In order to study the complex decision situation, we developed a supply chain game in which we studied experimentally the decisions of different stakeholder within the chain. 121 participants took part in a web-based supply chain game. We investigated the effects of gender, personality and technical competency on the performance within the supply chain. Also, learnability and the effect of presence of point-of-sale data are investigated. Performance depended on the position within the chain and fluctuating stock levels were observed in form of the bullwhip effect. Furthermore, we found that risk taking had an impact on the performance and that the performance improved after the first round of the game. [https://link.springer.com/chapter/10.1007/978-3-642-39226-9_46]
Production in high-wage countries can be made more efficient, cost-effective, and flexible by solving the conflict between planning and value orientation. A promising approach is to focus on planning and decision-making processes (production planning and control, design of production processes and machinery, etc.) and to aim to maximize overall planning efficiency. Planning efficiency can be expressed as the ratio between the benefit generated by preparing detailed process instructions to produce the parts or components and the corresponding planning efforts. Industrial companies wanting to gain a competitive advantage in dynamic global markets have to identify a set of non-dominated solutions with the most favorable effort–benefit ratio rather than a single solution. The optimum between detailed planning and the immediate implementation of value-adding activities (process steps) in the process chain needs to be found dynamically for each product.
This research area focuses on the management systems and principles of a production system. It aims at controlling the complex interplay of heterogeneous processes in a highly dynamic environment, with special focus on individualized products in high-wage countries. The project addresses the comprehensive application of self-optimizing principles on all levels of the value chain. This implies the integration of self-optimizing control loops on cell level, with those addressing the production planning and control as well as supply chain and quality management aspects. A specific focus is on the consideration of human decisions during the production process. To establish socio-technical control loops, it is necessary to understand how human decisions are made in diffuse working processes as well as how cognitive and affective abilities form the human factor within production processes.
Personal user data is collected and processed at large scale by a handful of big providers of Internet services. This is detrimental to users, who often do not understand the privacy implications of this data collection, as well as to small parties interested in gaining insights from this data pool, e.g., research groups or small and middle-sized enterprises. To remedy this situation, we propose a transparent and user-controlled data market in which users can directly and consensually share their personal data with interested parties for monetary compensation. We define a simple model for such an ecosystem and identify pressing challenges arising within this model with respect to the user and data processor demands, legal obligations, and technological limits. We propose myneData as a conceptual architecture for a trusted online platform to overcome these challenges. Our work provides an initial investigation of the resulting myneData ecosystem as a foundation to subsequently realize our envisioned data market via the myneData platform.