Refine
Document Type
- Conference Proceeding (18)
- Contribution to a Periodical (8)
- Report (4)
- Book (2)
- Part of a Book (2)
- Lecture (2)
- Internet Paper (2)
- Working Paper (2)
- Article (1)
- Master's Thesis (1)
Language
- English (21)
- German (17)
- Multiple languages (4)
Is part of the Bibliography
- no (42)
Keywords
- 01 (1)
- 02 (9)
- 03 (2)
- 04 (1)
- 5G (4)
- ADAM (2)
- AI (3)
- Agriculture (1)
- Artificial intelligence (2)
- Ausbildung (1)
Institute
Die Intransparenz in der eigenen Systemlandschaft und die Vielzahl an Industrie-4.0-Anwendungsfällen erschwerten KMU die nutzenorientierte Vernetzung von IT-Systemen und Shopfloor, die sogenannte IT-OT-Integration. Die richtige Auswahl von Digitalisierungsmaßnahmen mithilfe einer funktionalen und technischen Evaluation des Systembestands reicht häufig schon aus, um die vorhandenen Nutzenpotenziale zu heben. Im Forschungsprojekt ‚MarryIT‘ wurde eine Methodik entwickelt, die KMU gezielt bei der Aufnahme und Ableitung individueller Handlungsempfehlungen unterstützt. Mit Abschluss des Projekts im Mai 2021 wurde das Vorgehen zur vereinfachten Anwendung und Verfügbarkeit zusätzlich in ein Online-Tool (marryit-tool.fir.de) überführt, das nun kostenlos zur öffentlichen Nutzung bereitsteht.
Dieses Forschungs- und Entwicklungsprojekt wurde durch das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Programms „KMU-innovativ: Produktionsforschung“ (Förderkennzeichen 02K19K010) gefördert und vom Projektträger Karlsruhe (PTKA) betreut. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.
Networked digitalisation as an enabler for smart products and data-based business models presents companies with numerous and diverse challenges on their way through the digital transformation. Various reference architecture models have been developed in recent years to support these companies. A detailed analysis of these and in particular their use by companies quickly showed that currently existing reference models have major weaknesses in their practical suitability. With the Aachen Digital Architecture Management (ADAM), a framework was developed that specifically addresses the weaknesses of existing reference architectures and specifically takes up their strengths. As a holistic model, specially developed for use by companies, ADAM structures the digital transformation of companies in the areas of digital infrastructure and business development starting from customer requirements. Systematically, companies are enabled to drive the design of the digital architecture, taking into account design fields. The description of the design fields offers a detailed insight into the essential tasks on the way to a digitally networked company. The model is not only a structuring aid, but also contains a construction kit with the design fields to configure the procedure in the digital transformation. The procedure differentiates between the development of the digitalisation strategy and the implementation of the digital architecture. Three different case studies also show how ADAM is used in industry, what structuring support it can provide and how the digital transformation can be configured. The breadth and depth of ADAM enable companies to take the path of digital transformation systematically and in a structured manner, without ignoring the value-creating components of digitalisation. This qualifies ADAM as a sustainability-oriented framework, as it places the economic scaling, needs-based adaptation and future-oriented robustness of solution modules in the focus of digital transformation.
Die vorliegende Publikation soll dazu dienen, ein aktuelles Stimmungsbild der Industrie zu der Einführung von 5G einzufangen. Dazu wird analysiert, wie eine 5G-Einbindung in bereits bestehende IoT-Plattformen gelingen kann und welche Möglichkeiten zukünftig realisierbar werden. Dazu stellen wir fünf Hypothesen zum Einfluss von 5G auf IoT-Plattformen auf und leiten daraus ein Visionsbild eines 5G-Plattformkonzepts ab. Um den Einfluss der industriellen Einführung der Mobilfunkgeneration 5G auf IoT-Plattformen bewerten zu können, wurden sowohl Visionsbild als auch Hypothesen innerhalb strukturierter Interviews mit IoT-Plattformanbietern diskutiert und aufgearbeitet. Nachdem in Kapitel 2 die relevanten Grundlagen hinsichtlich des neuen Mobilfunkstandards 5G und Plattformen erarbeitet werden, werden in Kapitel 3 die Ergebnisse und Erkenntnisse der Interviews mit den Plattformanbietern zusammengefasst und erörtert. Basierend auf den Interviews geben wir einen Überblick über die konkreten Herausforderungen, das Interesse diverser Stakeholder und die aktuellen Entwicklungen rund um das Thema.
Feasibility Analysis of Entity Recognition as a Means to Create an Autonomous Technology Radar
(2021)
Mit den neuesten Technologietrends auf dem Laufenden zu bleiben, ist für Fertigungsunternehmen eine entscheidende Aufgabe, um auf einem global wettbewerbsfähigen Markt erfolgreich zu bleiben. Die Erstellung eines Technologieradars ist ein etablierter, jedoch meist manueller Prozess zur Visualisierung der neuesten Technologietrends.
Der Herausforderung, Technologien zu identifizieren und zu visualisieren, widmet sich das Projekt TechRad, das maschinelles Lernen einsetzt, um ein autonomes Technologie-Scouting-Radar zu realisieren. Eine der Kernfunktionen ist die Identifizierung von Technologien in Textdokumenten. Dies wird durch natürliche Sprachverarbeitung (NLP) realisiert.
Dieser Beitrag fasst die Herausforderungen und möglichen Lösungen für den Einsatz von Entity Recognition zur Identifikation relevanter Technologien in Textdokumenten zusammen. Die Autoren stellen eine frühe Phase der Implementierung des Entity Recognition Modells vor. Dies beinhaltet die Auswahl von Transfer Learning als geeignete Methode, die Erstellung eines Datensatzes, der aus verschiedenen Datenquellen besteht, sowie den angewandten Modell-Trainings-Prozess. Abschließend wird die Leistungsfähigkeit der gewählten Methode in einer Reihe von Tests überprüft und bewertet.
Heutzutage steigen die Technologievielzahl und -vielfalt täglich an. Unternehmen, die sich im Zuge der Digitalisierung für die Einführung eines cyber-physischen Systems interessieren, müssen sich zu Beginn einen schnellen Überblick über den verfügbaren Technologiemarkt verschaffen, der sich stündlich ändert. Darauf ausgerichtet hat das Projekt TechRad zum Ziel, dieses Technologiescouting in Form eines plattformbasierten Radars zu automatisieren, welches eine permanent aktuelle Übersicht über verfügbare Technologien liefert. Die Befüllung der Plattform wird durch ein gezieltes Webcrawling nach Technologien realisiert. Das Entwicklungsvorgehen des Radars soll als Referenzmodell dienen, um zukünftigen Scouting-Plattformen einen Leitfaden zur schnellen und effizienten Entwicklung zur Verfügung zu stellen, und beinhaltet neben den technischen Vorgaben auch einen rechtlichen Rahmen, der bei dem Crawling von Daten berücksichtigt werden muss. Das Vorhaben IT-2-1-025a / EFRE-0801386 der Forschungsvereinigung FIR e. V. an der RWTH Aachen wird über den PTJ durch den europäischen Fond für regionale Entwicklung in NRW (EFRE) mit Mitteln der europäischen Union (EU) gefördert.
Eine Herausforderung für produzierende Unternehmen in der Entwicklung intelligenter Produkte besteht darin, dass die Zielstellung, die mit einem intelligenten Produkt verfolgt wird, nicht expliziert ist. Zudem ist oftmals nicht spezifiziert, in welchem Anwendungsfall ein intelligentes Produkt agieren soll. Produzierende Unternehmen benötigen Unterstützung, um eine zielorientierte und folglich wirtschaftliche Melioration existierender Produkte zu gewährleisten. Ebendiese Melioration wird im Kontext von intelligenten Produkten als Smartifizierung bezeichnet und stellt damit einen Entwicklungsprozess dar, der ein bestehendes Produkt als Ausgangssituation im Sinne einer Anpassungskonstruktion expliziert. Die originäre Produktfunktion wird folglich nicht verändert, sondern das Produkt um digitale Funktionen und Dienstleistungen erweitert. Der Artikel befasst sich daher erstens mit der Beschreibung generischer Ziele für den Einsatz intelligenter Produkte im Maschinenbau. Eine Zusammenstellung und Erläuterung solcher Ziele unterstützt Unternehmen, eine Präzisierung der Zielfestlegung in der Initiierungsphase eines Smartifizierungsprojekts durchzuführen. Zweitens wird unter Anwendung der Ziel-Mittel-Beziehung ein Anwendungsfall intelligenter Produkte beschrieben. Abschließend werden beide Aspekte in einer Methode zusammengefasst, wie mittels Ziel- und Anwendungsfallbetrachtung Anforderungen abgeleitet und wie diese Elemente in Vorgehensmodelle der Produktentwicklung eingebettet werden können. Exemplarisch wird anhand einer Stanzmaschine aufgezeigt wie die Methode und die sich daraus ableitenden Ergebnisse im Smartifizierungsprozess zur Entwicklung einer intelligenten Stanzmaschine eingesetzt werden.
Der Technologie- und Trendradar 2022 enthält die neusten Technologien und Trends des vergangenen Jahres. Im aktualisierten Radar wurden die Technologiereifegrade in den Steckbriefen neu bewertet, die Anwendungen, Potenziale und Herausforderungen der Technologien wo nötig aktualisiert und neue Technologien aufgenommen.
Der Technologie- und Trendradar 2022 enthält elf neue Steckbriefe. Das Technologiefeld Vernetzung wurde um Eventgetriebene IT-Architekturen, Internet of Behaviors und Web3 erweitert. Dem Feld Virtualisierung wurde die Technologie Metaverse hinzugefügt. Das Technologiefeld Datenverarbeitung wurde um den Trend Data-Centric AI ergänzt, das Feld Prozesse um den Trend Digitale Souveränität. Im Technologiefeld Produkte wurden die Technologien Edge AI, Inter Planetary File System (IPFS), Photonische Siliziumchips, Soft-Robotik und Neuromorphic Computing aufgenommen.
Technologiefrüherkennung
(2022)
Unter Technologiefrüherkennung wird im Folgenden die gezielte Auseinandersetzung mit dem Technologiemarkt und unternehmensspezifischen Anwendungsfällen verstanden. Der Technologieeinsatz kann für Unternehmen entscheidend sein, um ihre Strategie, z. B. die Kostenführerschaft, erfolgreich zu verfolgen. Gleichzeitig können neue Technologien, wie z. B. der 3D-Druck, Markteintrittsbarrieren senken, sodass die Gefahr besteht, dass neue Wettbewerber in den Markt eintreten. Die vernetzte Digitalisierung profitiert unter anderem davon, dass (Informations-)Technologien günstiger und performanter werden. Durch diesen Trend empfiehlt es sich, den sich stetig ändernden Technologiemarkt im Blick zu behalten und eine Übersicht über relevante Technologien zu schaffen. Im folgenden Kapitel werden Methoden vorgestellt, mit denen dieser Überblick gezielt erreicht werden kann. (Quelle: https://link.springer.com/chapter/10.1007/978-3-662-63758-6_13)
Methods of machine learning (ML) are notoriously difficult for enterprises to employ productively. Data science is not a core skill of most companies, and acquiring external talent is expensive. Automated machine learning (Auto-ML) aims to alleviate this, democratising machine learning by introducing elements such as low-code / no-code functionalities into its model creation process. Multiple applications are possible for Auto-ML, such as Natural Language Processing (NLP), predictive modelling and optimization. However, employing Auto-ML still proves difficult for companies due to the dynamic vendor market: The solutions vary in scope and functionality while providers do little to delineate their offerings from related solutions like industrial IoT-Platforms. Additionally, the current research on Auto-ML focuses on mathematical optimization of the underlying algorithms, with diminishing returns for end users. The aim of this paper is to provide an overview over available, user-friendly ML technology through a descriptive model of the functions of current Auto-ML solutions. The model was created based on case studies of available solutions and an analysis of relevant literature. This method yielded a comprehensive function tree for Auto-ML solutions along with a methodology to update the descriptive model in case the dynamic provider market changes. Thus, the paper catalyses the use of ML in companies by providing companies and stakeholders with a framework to assess the functional scope of Auto-ML solutions.