Refine
Document Type
- Report (4)
- Part of a Book (1)
Language
- German (5)
Is part of the Bibliography
- no (5)
Keywords
- 02 (2)
- Business-Analytics (2)
- Datenqualität (1)
- Datenverarbeitungssystem (1)
- Dienstleistung (1)
- Dienstleistungsprofitabilität (1)
- KMU (1)
- New learning (1)
- Platform (1)
- RPA (1)
Institute
Im Forschungsprojekt „BASuccess – Einführungskonzept für Business Analytics in produzierenden Unternehmen der Nahrungsmittelindustrie“ wurde ein Implementierungskonzept entwickelt, welches insbesondere kleine und mittlere Unternehmen (KMU) der Nahrungsmittelindustrie bei der Auswahl und Einführung von Business Analytics unterstützt. Dabei wird den Unternehmen ein Überblick über Einsatzfelder für Business Analytics gegeben. Zunächst werden die theoretischen Grundlagen von Business Analytics aufgeführt und evaluiert. Anhand von Fallstudien und mit Hilfe eines Strukturgleichungsmodells wurden die kausalen Abhängigkeiten und Wirkzusammenhänge zwischen den Erfolgsfaktoren und dem Erfolg hypothesiert und untersucht. Durch eine empirische Untersuchung mittels einer Unternehmensbefragung wurde das aufgestellte Modell validiert. Elementare Ziele des Forschungsvorhabens waren die Entwicklung eines Modells zur Einführung von Business Analytics sowie die Programmierung eines IT-Tools in Form eines webbasierten Demonstrators, um Führungskräfte, die mit der Einführung von Business Analytics betraut sind, zu unterstützen. Um das Ziel der Entwicklung eines Konzeptes zur Einführung von Business Analytics bei KMU in der Nahrungsmittelindustrie zu erreichen, wurde ein mehrstufiges Vorgehen entwickelt. Die in diesem Forschungsprojekt erarbeiteten Ergebnisse bieten KMU die Möglichkeit, individuelle Anwendungsfelder für den Einsatz von Business Analytics selbstständig zu erkennen.
Es handelt sich um den Schlussbericht zum IGF-Vorhaben Nr. 20692.
Im Zuge der Digitalisierung der Industrie stieg die Menge an erhobenen Daten aus unterschiedlichsten internen und externen Quellen in den letzten Jahren exponentiell an. Diese Entwicklung wird sich fortsetzen. Insbesondere Unternehmen des Maschinen- und Anlagenbaus verfügen über eine Vielzahl von ungenutzten Nutzungs- bzw. Kundendaten. Hier setzt das Vorhaben ServiceAnalytics an.
Integrierte Sensoren innerhalb der Maschinen liefern kontinuierlich Daten über den Zustand der verbauten Komponenten und deren Nutzung (bspw. Verschleiß, Warnungen, Störungsmeldungen, Fehlercodes, Ereignismeldungen, aber auch Umgebungsdaten wie Temperatur, Feuchtigkeit, etc.). Auf diese können die Hersteller heute oftmals mittels der Basistechnologie des Internets in Echtzeit zugreifen und sie somit nutzbar machen. Besonders im Bereich des Dienstleistungsgeschäfts können die aufgenommenen Daten genutzt werden, um damit sowohl das Dienstleistungsportfolio zu erweitern als auch die Profitabilität des bestehenden Dienstleistungsgeschäftes erhöhen. Dafür stehen die Unternehmen vor der Herausforderung eigene Datenanalyse-Fähigkeiten zu entwickeln. Diese Fähigkeit wird in der Literatur Business-Analytics genannt und befähigt die Unternehmen dazu, die erhobenen Daten mittels geeigneter Analyseinstrumente auszuwerten, um eine bessere Entscheidungsgrundlage für geschäftsrelevante Fragestellungen zu schaffen (s. Chen et al. 2012). Um die generierten Daten zu nutzen, damit die vorhandenen Potenziale im Dienstleistungsgeschäft realisiert werden können, müssen sich Unternehmen daher weiterentwickeln und ein Geschäftsfeld Service-Analytics aufbauen. Unter Service-Analytics wird in diesem Zusammenhang die Anwendung von Business-Analytics im Dienstleistungs-geschäft verstanden. In diesem Zuge durchlaufen die Unternehmen einen Transformationsprozess, der durch unterschiedlichste Herausforderungen gekennzeichnet ist. So stoßen die potenziellen Anbieter der datenbasierten Dienstleistungen während des Wandels auf eine dynamische Unternehmensumwelt. Wechselnde Kundenbedürfnisse, schnell reagierende Wettbewerber und sich rasant wandelnde Technologien sind nur einige der Faktoren, die auf die Unternehmen wirken. Diese Herausforderungen gilt es durch geeignete Instrumente zu adressieren, um das neue Geschäftsfeld Service-Analytics nachhaltig und mit Erfolg aufzubauen. Häufig fehlt es jedoch insbesondere klein- und mittelständischen Unternehmen an dem nötigen Fach- und Prozesswissen, um die Datenerhebung und -auswertung wirtschaftlich rentabel zu ge-stalten.
So bestand das Ziel des Forschungsprojektes ServiceAnalytics darin, klein- und mit-telständische Unternehmen (KMU) des Maschinen- und Anlagebaus zur Anwendung von Service-Analytics zu befähigen mit dem Ziel, die Dienstleistungsprofitabilität zu steigern.
Ziel des Forschungsprojekts RPAsset war die Identifikation geeigneter Prozesse und Technologien für KMU, um eine optimale Integrationsstrategie für Robotic-Process-Automation (RPA) aufzuzeigen, die sowohl organisatorische und prozessuale als auch humane Aspekte adäquat berücksichtigt. Die Ergebnisse des Forschungsprojekts RPAsset befähigen KMU in Deutschland, die relevanten Administrationsprozesse zu identifizieren und möglichst ressourcenschonend RPA-Anwendungen zu implementieren. Die freigesetzten Zeitressourcen können beispielsweise genutzt werden, um komplexere Themenfelder mit hohem kognitivem Anspruch zu bearbeiten.
Die Vernetzung von Mitarbeiter*innen und Maschinen sowie die zunehmende Automatisierung, auch von Wissensarbeit, wird die Rolle der Beschäftigten im industriellen Wertschöpfungsprozess fundamental verändern. Aus diesem Grund ist arbeitsbezogene Kompetenzentwicklung aus wirtschaftlicher, gesellschaftlicher sowie sozialer Perspektive ein zentraler Schlüsselaspekt für die mittelfristige Sicherung der Wettbewerbsfähigkeit. Personalabteilungen haben bislang jedoch meist nur bedingt Kenntnisse über die bevorstehenden Veränderungen und die sich daraus ergebenden Kompetenzanforderungen an die Mitarbeiter*innen. Ziel des Forschungsvorhabens LidA war es, die sich aufgrund der fortschreitenden Digitalisierung verändernden Kompetenzanforderungen entlang definierter Industrie-4.0-Reifegradmodelle zu spezifizieren. Hierzu wurden Beschäftigte befähigt, indem zum einen ihre Selbstlernkompetenz gefördert wurde und zum anderen individuelle Lernpfade abgeleitet worden sind. Anschließend wurden diese mit passender Didaktik in Lehr- und Lernmodule überführt und auf einer bewährten Open-Source-Plattform für eine breite Nutzergruppe verfügbar gemacht. Diese soll einem breiten Nutzerkreis, speziell KMU, eine bedarfsgerechte Schulung der Mitarbeiter*innen im Zeitalter des digitalen Wandels gewährleisten.
Im Forschungsprojekt „Legitimise IT“ wurde ein einheitlicher Ansatz zur Nutzung von Schatten-IT für produzierende kleine und mittlere Unternehmen (KMU) entwickelt. Dadurch sollen KMU zur kontrollierten Legitimierung nutzenstiftender Schatten-IT unter Berücksichtigung vorhandener Risiken befähigt werden.
Schatten-IT ist in den meisten Unternehmen vorhanden. Durch den unkontrollierten Einsatz von Schatten-IT im Unternehmen entstehen zahlreiche Risiken, welche zu Ineffizienzen und Fehleranfälligkeiten bei den Betriebsabläufen führen können. Dabei wird die Entstehung von Schatten-IT nicht zuletzt durch die Schnelllebigkeit und Vielfalt der technologischen Entwicklungen weiter beschleunigt. Der Ansatz, durch eine strikte Vorgabe der Unternehmensführung lediglich auf genehmigte und zentral verwaltete IT-Anwendungen zurückzugreifen, um Schatten-IT zu unterbinden, hat sich in der unternehmerischen Praxis nicht bewährt. Bisherige Ansätze adressieren nicht die Gründe für die Notwendigkeit von Schatten-IT und bieten keinen organisatorischen und insbesondere technologischen Rahmen, um deren Vorteile unternehmerisch zu nutzen.
Daher wurde im Projekt ein Ansatz entwickelt, der einerseits die aufgezeigten Risiken minimiert und andererseits Mitarbeitenden die notwendigen Freiheiten für eigene, kreative Lösungen bietet. Damit Unternehmen ihre großen Herausforderungen bei der Abschätzung der Risiken- und Nutzenaspekte wie auch beim strikten Verzicht auf die eingesetzten Schatten-IT-Anwendungen bewältigen können, wird eine entsprechende Methodik gefordert.