Refine
Is part of the Bibliography
- no (3)
Keywords
- 02 (1)
- 03 (1)
- AI (1)
- Artificial intelligence (1)
- Cognitive assistance system (1)
- Condition-Monitoring (1)
- Electrical grid infrastructure (1)
- Explainable AI (1)
- KI (1)
- Künstliche Intelligenz (1)
Institute
The development of renewable energies and smart mobility has profoundly impacted the future of the distribution grid. An increasing bidirectional energy flow stresses the assets of the distribution grid, especially medium voltage switchgear. This calls for improved maintenance strategies to prevent critical failures. Predictive maintenance, a maintenance strategy relying on current condition data of assets, serves as a guideline. Novel sensors covering thermal, mechanical, and partial discharge aspects of switchgear, enable continuous condition monitoring of some of the most critical assets of the distribution grid. Combined with machine learning algorithms, the demands put on the distribution grid by the energy and mobility revolutions can be handled. In this paper, we review the current state-of-the-art of all aspects of condition monitoring for medium voltage switchgear. Furthermore, we present an approach to develop a predictive maintenance system based on novel sensors and machine learning. We show how the existing medium voltage grid infrastructure can adapt these new needs on an economic scale.
In recent times, both geopolitical challenges and the need to counteract climate change have led to an increase in generated renewable energy as well as an increased demand for clean electrical energy. The resulting variability of electricity production and demand as well as an overall demand increase, put additional stress on the existing grid infrastructure. This leads to strongly increased maintenance demands for distribution system operators (DSOs). Today, condition monitoring is used to address these challenges. Researchers have already explored solutions for monitoring critical assets like switchgear and circuit breakers. However, with a shrinking knowledgeable technical workforce and increasing maintenance requirements, mere monitoring is insufficient. Already today, DSOs ask for actionable recommendations, optimization strategies, and prioritization methods to manage the growing task backlog effectively. In this paper we propose a vision of a grid-level cognitive assistance system that translates the outcome of diagnosis and prognosis systems into actionable work tasks for the grid operator. The solution is highly interdisciplinary and based on empirical studies of real-world requirements. We also describe the related work relevant to the multi-disciplinary aspects and summarize the research gaps that need to be closed over the next years.
Ziel des beantragten Fördervorhabens war es, die kontinuierliche Funktionsüberwachung und insbesondere den heutigen Sensoreinsatz in Verteilnetzen zu revolutionieren, durch Verwendung von Methoden der Künstlichen Intelligenz (KI), gepaart mit einer Verbesserung der zugehörigen Sensortechnik und eingesetzter digitaler Dienstleistungssysteme. Die integrale Betrachtung der wissenschaftlichen und technischen Herausforderungen und deren Bewältigung führten zu den notwendigen Ergebnissen, um den Erfolg der Energie- und Mobilitätswende in Deutschland zu unterstützen.
Mit den Ergebnissen des Vorhabens konnte der heutige Sensoreinsatz in Verteilnetzen durch Verwendung von Methoden der Künstlichen Intelligenz (KI) zusammen mit einer Erweiterung der Sensortechnik grundlegend verbessert werden. Die daraus abgeleiteten Unterziele umfassen alle wichtigen Aspekte des Sensoreinsatzes in elektrischen Betriebsmitteln.