Refine
Document Type
- Part of a Book (4)
- Article (2)
- Conference Proceeding (2)
Is part of the Bibliography
- no (8)
Keywords
- 03 (2)
- Auftragsabwicklung (1)
- Circular economy (1)
- Decision model (1)
- Enterprise-Resource-Planning (1)
- Entscheidungsmodell (1)
- Exzellenzcluster (1)
- Integrativ (1)
- Konfiguration (2)
- Kreislaufwirtschaft (1)
Institute
Entgegen der von Porter postulierten Inkompatibilität von Economies of Scale und Economies of Scope sind in Hochlohnländern produzierende Unternehmen in zunehmendem Maße herausgefordert, sowohl individuelle Kundenbedürfnisse zu befriedigen als auch gegen den Kostendruck globalisierter Märkte zu bestehen. Diese Herausforderung entspricht einer Auflösung der Scale-Scope-Dichotomie. Aufgrund der hochgradigen Interdependenz der strukturbildenden Elemente eines Produkt-Produktionssystems müssen diese zur Auflösung der Dichotomie in ihrem spezifischen Standardisierungsgrad aufeinander abgestimmt werden.
Diese Abstimmung entspricht der Aufgabenstellung der integrativen Bewertungs-und Konfigurationslogik, die im Folgenden präsentiert wird. Auf Basis eines integrierten Bewertungsmodells, das Produkt-Produktionssysteme in vier quantifizierbare Spannungsfelder gliedert, kann hierbei der aktuelle Betriebspunkt eines Produktionssystems analysiert werden. Über die gewonnenen Analyseergebnisse ermöglicht dieses Bewertungsmodell die Steuerung des Konfigurationsprozesses eines Produkt-Produktionssystems in Form einer Konfigurationslogik.
A company can choose between three generic competitive strategies. Alongside the strategy of cost leadership are the strategy of differentiation and the strategy of focussing on niches, although we will not be discussing this latter any further here. The strategy of cost leadership is based on the achievement of “economies of scale”, so generating advantage from the benefits of cost reduction, learning curve effects and automation. In the strategy of differentiation the focus is on “economies of scope” which enable the customer-specific products to be offered, but this is generally achieved only with an increase in the complexity of products and processes. In the past it was assumed that these two strategies were mutually exclusive, as an increase in the economies of scale basically leads to a reduction in the economies of scope, and vice versa. But in order to survive in the international competitive arena companies in the high-wage countries need increasingly to offer individually tailored products at competitive prices. The target to be aimed at is therefore customer-specific products at the cost of mass production, so resolving the dilemma between economies of scale and economies of scope. For this it is necessary to optimise the alignment of all the structural elements in both the product and its production, because of the high level of their interdependence.
The areas on which we will focus our review and designs in the following will be what are known as product-production systems, or more briefly, production systems. This topic includes not only the resources and processes of the value creation systems, but also the products produced and offered on the market by a company as one connected entity. In order to tackle the challenges mentioned above, it is necessary to make it possible to measure and compare the current position of any given production system on the see-saw between economies of scale and economies of scope, and then be able to redesign specific facets of them as a second phase. A method of integrative evaluation and design of production systems is presented below for this purpose.
Maximising economies of scale in individualised production is a vital issue for producing companies in high wage countries. A decisive enabler for this is the management of product and process complexity by systematic standardisation. Due to the strong and far-reaching impact of complexity on the value added chain, its management requires an integrative consideration of the entire product and production system.
The following paper introduces a methodology facing this challenge. The core element of this methodology is an integrative and complexity-focused assessment model. This assessment model has been validated experimentally by analysing key company data from more than 50 German toolmaking firms. Findings of this empirical investigation are presented in this paper.
Production in high-wage countries can be made more efficient, cost-effective, and flexible by solving the conflict between planning and value orientation. A promising approach is to focus on planning and decision-making processes (production planning and control, design of production processes and machinery, etc.) and to aim to maximize overall planning efficiency. Planning efficiency can be expressed as the ratio between the benefit generated by preparing detailed process instructions to produce the parts or components and the corresponding planning efforts. Industrial companies wanting to gain a competitive advantage in dynamic global markets have to identify a set of non-dominated solutions with the most favorable effort–benefit ratio rather than a single solution. The optimum between detailed planning and the immediate implementation of value-adding activities (process steps) in the process chain needs to be found dynamically for each product.
This research area focuses on the management systems and principles of a production system. It aims at controlling the complex interplay of heterogeneous processes in a highly dynamic environment, with special focus on individualized products in high-wage countries. The project addresses the comprehensive application of self-optimizing principles on all levels of the value chain. This implies the integration of self-optimizing control loops on cell level, with those addressing the production planning and control as well as supply chain and quality management aspects. A specific focus is on the consideration of human decisions during the production process. To establish socio-technical control loops, it is necessary to understand how human decisions are made in diffuse working processes as well as how cognitive and affective abilities form the human factor within production processes.
Today’s manufacturers are facing numerous challenges such as highly entangled and interconnected supply chains, shortening product lifecycles and growing product complexity. They thus feel the need to adjust and adapt faster on all levels of value creation. Self-optimization as a basic principle appears a promising approach to handle complexity and unforeseen disturbances within supply chains, machines and processes. Therefore it will improve the resilience and competitiveness of manufacturing companies.
This paper gives an introduction to the concept of self-optimizing production systems. After a short historical review, the different levels of value creation from supply chain design and management to manufacturing and assembly are analyzed considering their specific demands and needs for self-optimization. Examples from each of these levels are used to illustrate the concept of self-optimization as well as to outline its potential for flexibility and productivity. This paper closes with an outlook on the current scientific work and promising new fields of action.
Die notwendige Transformation der Linear- zur Kreislaufwirtschaft ermöglicht die Entkopplung des Wirtschaftswachstums und Ressourcenverbrauchs. Das ökonomische und ökologische Potenzial der Kreislaufwirtschaft wird durch die zeitgleiche Umsetzung mehrere, simultaner Kreislaufstrategien gesteigert. Diese Umsetzungsform bedingt allerdings vielfältige und komplexe Entscheidungen für die operative Abwicklung. Das entwickelte kaskadierte Entscheidungsmodell differenziert diese Entscheidungen innerhalb verschiedener Ebenen des Wertschöpfungssystems.
Komplexe Anforderungen an das operative Supply-Chain-Management führen zu komplexen Entscheidungssituationen innerhalb des betrieblichen Alltags. Ein konzeptioniertes, modulares Simulationsmodell für das operative Supply-Chain-Management kann die Entscheidungsfindung auf Grundlage von Analysen und Daten unterstützen. Die Modularisierung ermöglicht eine flexible, effiziente und unternehmensspezifische Anwendung des Simulationsmodells. Die Modularität ist durch die individuelle Kombination geeigneter Module und Funktionen sowie der Abbildung dazugehöriger Informationsflüsse realisiert. Informationsflüsse werden dabei durch definierte Informationsobjekte, wie z. B. einen Fertigungsauftrag oder eine Maschine, spezifiziert. Die Module und Funktionen bilden die unterschiedlichen Prozessschritte ab.