Refine
Document Type
- Article (9)
- Book (4)
- Part of a Book (6)
- Conference Proceeding (11)
- Contribution to a Periodical (20)
- Internet Paper (3)
- Report (6)
- Working Paper (12)
Language
- German (54)
- English (15)
- Multiple languages (2)
Is part of the Bibliography
- no (71)
Keywords
- 01 (4)
- 02 (10)
- 03 (8)
- 3PhasenKonzept (3)
- AM4Industry (3)
- APS-System (1)
- Additive Fertigung (1)
- Algorithmus (1)
- Anforderungsmanagement (1)
- Anomaly detection (1)
Institute
Data-driven transparency in end-to-end operations in real-time is seen as a key benefit of the fourth industrial revolution. In the context of a factory, it enables fast and precise diagnoses and corrections of deviations and, thus, contributes to the idea of an agile enterprise. Since a factory is a complex socio-technical system, multiple technical, organizational and cultural capabilities need
to be established and aligned. In recent studies, the underlying broad accessibility of data and corresponding analytics tools are called “data democratization”. In this study, we examine the status quo of the relevant capabilities for data democratization in the manufacturing industry.
(1) and outline the way forward.
(2) The insights are based on 259 studies on the digital maturity of factories from multiple industries and regions of the world using the acatech Industrie 4.0 Maturity Index as a framework. For this work, a subset of the data was selected.
(3) As a result, the examined factories show a lack of capabilities across all dimensions of the framework (IT systems, resources, organizational structure, culture).
(4) Thus, we conclude that the outlined implementation approach needs to comprise the technical backbone for a data pipeline as well as capability building and an organizational transformation.
Produzierende Unternehmen sind heutzutage aufgrund zunehmender Konkurrenz aus Niedriglohnländern und eines schrumpfenden Technologievorsprungs einem enormen Kostendruck ausgesetzt, sodass Konzepte zur Steigerung der Produktivität erforderlich werden. Diese Konzepte sind vor allem auf die Optimierung innerbetrieblicher Abläufe auf Basis von Rückmeldedaten ausgerichtet. Eine notwendige Bedingung für das Ausschöpfen datenbasierter Wertschöpfungspotenziale ist eine konsistente und widerspruchsfreie Datenbasis. Mit dem Forschungsprojekt „Anwendung der Datenfusion bei der Erfassung und Speicherung betrieblicher Rückmeldedaten (DaFuER)“ wird demgemäß das Ziel verfolgt, die Erhöhung der Datenqualität von betrieblichen Rückmeldedaten durch die Anwendung von Methoden der Datenfusion zu ermöglichen.
Als Ergebnis des Forschungsprojekts wird in diesem Leitfaden eine Methode zur anwendungsfallspezifischen Ableitung geeigneter Methoden der Datenfusion dargelegt. Zunächst erfolgt die Definition des Anwendungsfalls. Dabei wird zur Ermittlung relevanter Informationsbedarfe den Anwendenden der Methodik eine Übersicht bereitgestellt, welche die verschiedenen für die Produktionsplanung und steuerung benötigten Informationen enthält. Außerdem werden Datenquellen anhand der Art der Datenerfassung klassifiziert. Diese Klassifikation ist die Grundlage für die Identifikation der im jeweiligen Anwendungsfall zur Verfügung stehenden Datenquellen.
Im Folgenden werden aus den verfügbaren Datenquellen diejenigen ermittelt, welche fusioniert werden sollen. Dazu wurde eine tabellarische Übersicht erstellt, mit Hilfe derer Datenquellen den Informationen zugeordnet werden, die sie bereitstellen. Weiterhin werden diese Datenquellen hinsichtlich ihrer Datenqualität auf Basis ausgewählter Qualitätsmerkmale bewertet. Für eine benötigte Information wählen die Anwendenden aus den ihnen zur Verfügung stehenden Datenquellen diejenigen zur Fusion aus, welche den Informationsbedarf decken und sich hinsichtlich der Erfüllung der Qualitätsmerkmale komplementieren.
Zuletzt wird eine für den konkreten Anwendungsfall geeignete Fusionsmethode der ausgewählten Datenquellen bestimmt. Grundlage dafür ist eine morphologische Untersuchung von Datenquellen. Durch eine Clusteranalyse möglicher Fehlerarten in Abhängigkeit der Kombination von verschiedenen morphologischen Merkmalsausprägungen werden prozesstypische Fehler der Datenfusion abgeleitet. Somit ist man in der Lage, anhand der ausgewählten Datenquellen die spezifischen Herausforderungen bei der Datenfusion zu identifizieren. Für die finale Auswahl einer für den Anwendungsfall geeigneten Datenfusionsmethode wurden für die ermittelten Prozessfehler die jeweiligen Eignungen der verschiedenen Methoden bewertet. Auf Grundlage dieser Bewertung wählen die Anwendenden schlussendlich diejenige Methode aus, die für die von ihnen identifizierten Herausforderungen am besten geeignet ist.
Die Globalisierung und der steigende Wettbewerbsdruck erfordern, dass Supply Chains heutzutage komplexe Anforderungen erfüllen. Dabei müssen sie gleichzeitig flexibel genug sein, um an kurzfristige Veränderungen angepasst werden zu können. Ein unternehmensübergreifender Datenaustausch ermöglicht den Akteuren durch schnelle Informationsweitergabe über auftretende Ereignisse entlang der Supply Chain, dynamisch auf aktuelle Gegebenheiten zu reagieren und dadurch hervorgerufene mögliche Schäden zu minimieren. Auch wenn viele Unternehmen mit der Bereitstellung von Daten noch zurückhaltend sind, gehen die Vorteile des Datenaustauschs weit über die Verkürzung der Reaktionszeit hinaus.
The environment in which companies operate is increasingly volatile and complex. This results in an increased exposure to disruptions. Past disruptions have especially affected procurement. Thus, companies need to prepare for disruptions. The preparedness for disruptions in the context of procurement is significantly influenced by the design of the procurement strategy. However, a high number of purchased articles and a variety of influencing factors lead to high complexity in procurement. The systematic design of the procurement strategy should therefore take into account the criticality of the purchased articles. This enables to focus on the purchased articles that have a high impact on the disruption preparedness. Existing approaches regarding the design of the procurement strategy in uncertain environments either lack practical applicability and objective evaluation or focus on the criticality of raw materials rather than of purchased articles. Therefore, a data-based approach for the systematic design of the procurement strategy in the context of the Internet of Production has been proposed. One central aspect of this approach is the identification of success-critical purchased articles. Thus, this paper proposes a framework for characterizing purchased articles regarding supply risks by combining two systematic analyses. First, a systematic literature review is performed to answer the question of what factors can be used to describe the supply risks of purchased articles. The results are analyzed regarding sources and impacts of risks and thus contribute to a structured characterization of supply risks. Second, existing criticality assessment approaches for raw materials are analyzed to identify categories and indicators that describe purchased articles. The results of both reviews provide the basis for linking product characteristics with supply risks and assessing product criticality which will be integrated into an app prototype.
Im "Data Quality Center" widmen sich Experten und Forscher der Hochschule Heilbronn, des FIR und des Trovarit Competence Centers Datenmanagement gemeinsam der Frage, mit welchen Werkzeugen und Methoden Unternehmen effizient die Qualität ihrer Stammdaten messen und verbessern können. Erstes Ziel ist die Entwicklung einer Methodik und Toolchain für das betriebliche Stammdatenmanagement zur Evaluierung und Sicherung der Stammdatenqualität. Der Beitrag liefert erste Ergebnisse sowie eine Marktübersicht zu MDM-Lösungen. Außerdem wird die DQC-Methodik zur Bewertung der Stammdatenqualität im Unternehmen beschrieben.
Das primäre Ziel des Projekts 'AM 4 Industry' bestand darin, ein Modell zu entwickeln, das die Vorteile der Integration von Additiver Fertigung in die Produktionstechnologien eines Unternehmens aufzeigt. Hierzu wurden sowohl die resultierenden Kosten als auch der durch die Produktion mit Additiver Fertigung generierte Benefit identifiziert.
Das Kosten-Nutzen-Modell soll ein für die Industrie praktikables Modell bieten, das den Vergleich verschiedener Produktionsmethoden für bestimmte Teile ermöglicht. Dadurch sollen Unternehmen befähigt werden, fundierte Entscheidungen über die potenzielle Einbeziehung der Additiven Fertigung in ihre Produktion zu treffen. Heutzutage basieren diese Entscheidungen oft auf unvollständigen Informationen, Teilkosten und unsachgemäßem Urteilsvermögen.
Der Einsatz der Additiven Fertigung zur Herstellung von Teilen verändert oft mehr als lediglich einen Einzelaspekt in der Lieferkette. Aus diesem Grund ist es schwierig, einen klaren Überblick über den möglichen Nutzen sowie eventuelle Kosten zu erhalten. Für einen Vergleich, der alle Aspekte berücksichtigt, ist eine ganzheitliche Betrachtung erforderlich. Hierzu müssen alle einflussnehmenden Faktoren betrachtet werden. Dazu zählt insbesondere die fundierte Betrachtung des gesamten Produktlebenszyklus: Produktdesign / Engineering, Produktion / Qualität, Service / After Sales. Die Vorteile der Produktion mit Additiver Fertigung sind zum Beispiel die Funktionsintegration in einzelne Bauteile oder neue Möglichkeiten in der Ersatzteilfertigung. Demgegenüber stehen jedoch u. a. teilweise längere Produktionszeiten und hohe Implementierungskosten der Technologie.
Da es nicht möglich ist, den Nutzen der Additiven Fertigung allein mit einem klassischen Kostenvergleich zu bewerten, musste ein neues generisches Modell entwickelt werden, das die über den gesamten Lebenszyklus entstehenden Kosten mit den technologischen Vorteilen vergleicht. Mit diesem Wissen erhalten Unternehmen einen Wettbewerbsvorteil, denn anstelle von zeitaufwändigen Trial-and-Error-Tests kann das Modell den Entscheidungsprozess beschleunigen und die Erfolgsrate der Entscheidungen erhöhen.
Darüber hinaus wird ein wirtschaftlicherer Einsatz der Technologie ermöglicht, indem bei der Anwendung des entwickelten Modells neue Vorteile Additiver Fertigung identifiziert und schließlich nutzbar gemacht werden können. Die Anwendbarkeit des Modells in einem frühen Stadium - auch ohne genaue Daten - ermöglicht es Anwendern, sich bei ihren Bemühungen auf erfolgversprechende Anwendungsfälle zu konzentrieren und damit Ressourcen effizienter einzusetzen.
Künstliche Intelligenz ist eine der Schlüsseltechnologien der Digitalen Transformation. Auch das ERP-System, also der digitale Prozess- und Datenhub in Unternehmen, wird zunehmend mit KI-Technologien angereichert. Bis dato sind jedoch die Zahl der Anwendungsfälle im ERP-Umfeld und das Angebot der ERP-Anbieter im Bereich KI noch überschaubar. KI in Business Anwendungen wird zukünftig jedoch viele Facetten haben. So werden KI-gestützte Datenanalytik, Prognosesysteme, Suchmaschinen, maschinelle Übersetzungen, Bots und wissensbasierte Expertensysteme sehr schnell Einzug in Geschäftsanwendungen halten. Somit steht fest: Die Einbindung und Nutzung von Künstlicher Intelligenz wird die ERP-Landschaft deutlich verändern.
Das Produktionssystem ist ein offenes, sozio-technisches System. Es besitzt eine komplexe Struktur, in der Menschen, Maschinen, Material und Informationen zusammenwirken, um eine Wertsteigerung zu erreichen. Das Produktionssystem steht in ständiger Interaktion mit seiner Umwelt (Westkämper et al. 2013). So sind die Kunden-Lieferanten-Beziehungen von Produktionssystemen häufig dynamisch und instabil. In dieser Gesamtkomplexität können Störungen auftreten, z.B. Maschinen- und Personalausfall sowie Fehlmaterial, die zu Termin- und Lieferverzögerungen führen. Dabei bildet die kundenbezogene Liefertermintreue mit Abstand die führende logistische Zielgröße für produzierende Unternehmen in Deutschland (Brambring et al. 2013). Vor allem im Maschinen- und Anlagenbau, der durch eine besonders komplexe Auftragsabwicklung geprägt ist, stellt eine hohe Liefertermintreue einen bedeutenden Wettbewerbsvorteil dar. Sie wird häufig als Indikator für Prozessqualität herangezogen, welche dem Kunden Zuverlässigkeit demonstriert und zugleich eine interne Voraussetzung für die Planbarkeit des eigenen Geschäftsbetriebs ist (VDMA 2007). Während eine planmäßige und somit termintreue Abwicklung des Leistungserstellungsprozesses Kundenbindung bewirkt, führen Terminüberschreitungen häufig zum Verlust von Kundenbeziehungen sowie Vertragsstrafen (Arnolds et al. 2016).Störungen im Produktionssystem gefährden die Liefertermintreue und damit die Kundenzufriedenheit (Bosshardt 2007). Durch Gegenmaßnahmen entstehen außerdem Zusatzkosten, z.B. durch Zusatzschichten oder Auslagerung von Fertigungsschritten, die die Profitabilität der Aufträge gefährden können. Daher ist es für Unternehmen wichtig, bei Störungen nicht nur die potenziellen Handlungsoptionen, sondern viel mehr deren finanziellen Auswirkungen auf das Produktionssystem zu kennen, um eine optimale Strategie entwickeln zu können. Nur diese Transparenz ermöglicht es Unternehmen, die negativen finanziellen Auswirkungen gegen die negativen Auswirkungen auf die Kundenbeziehungen abzuwägen. In der Praxis stellt sich diese Aufgabe allerdings als sehr schwierig heraus. Unternehmen reagieren häufig nur reaktiv und erfahrungsbasiert. Mitarbeiter müssen sowohl die komplexen Abläufe im Betrieb kennen als auch potenzielle Handlungsoptionen sowie deren Auswirkungen abschätzen können. Dabei müssen die Mitarbeiter eine Komplexität überwinden, die insbesondere bei Einzel- und Kleinserien aufgrund der hohen Vielfalt von Produkten und Prozessen besonders hoch ist. Dies trifft besonders auf KMU zu, die nur über rudimentäre Softwareunterstützungen verfügen.In der Folge werden häufig suboptimale und teure Maßnahmen getroffen. Gleichwohl sind die finanziellen Auswirkungen nicht immer direkt nachvollziehbar, was die finanzielle Stabilität des Unternehmens gefährdet. Darüber hinaus kann die Liefertermintreue der Aufträge, die nicht direkt durch die Störungen betroffen sind, stark negativ beeinflusst werden. Die Summe der daraus entstehenden Folgen kann sich in manchen Fällen stärker auf das Unternehmen auswirken als die Verspätung eines einzelnen, wenn auch wichtigen Auftrages, der direkt durch die Störung betroffen ist. Das durchgeführte Forschungsprojekt „EkuPro“ unterstützt Unternehmen bei der Bewältigung dieser Herausforderungen, indem eine transparente Entscheidungsunterstützung durch das entwickelte Softwaretool ermöglicht wird.
Zielsetzung:
Das Ziel des erarbeitenden Forschungsprojektes war die Entwicklung eines Tools zur objektiven Entscheidungsunterstützung, mit dem kompensatorische Maßnahmen zur Beschleunigung einzelner Aufträge quantitativ und finanziell bewertet werden können. Das Tool unterstützt den Produktionssteuerer, indem es bei kurzfristigen Entscheidungen einen Überblick über die möglichen Handlungsalternativen zur Verfügung stellt. Der Produktionssteurer kann somit auf Basis der angezeigten potenziell entstehenden Kosten eine optimale Entscheidung treffen. Zur Unterstützung wurden die Simulationsergebnisse visualisiert, um die Analyse zu erleichtern. Zudem ist das Tool auf mobilen Endgeräten einsatzfähig. Das Grundprinzip des Tools besteht darin, beim Auftreten einer Störung zunächst die aktuelle Situation des Produktionssystems und die Störung selbst zu erfassen. Dabei werden interne und externe Störungen berücksichtigt, wobei externe Störungen nicht direkt, sondern durch ihre Auswirkungen auf die interne Produktionslogistik beschrieben werden. Die notwendigen Daten zur Abbildung der aktuellen Situation sollen den gängigen Systemen, z.B. MES und ERP, entnommen werden. Auf dieser Basis kann der Produktionsplaner verschiedene Szenarien definieren, die jeweils ein unterschiedliches Set an Maßnahmen beinhalten. Die Auswirkung dieser Maßnahmen wird mithilfe einer Software simuliert und die Ergebnisse, vor allem die Liefertermintreue der Aufträge sowie die finanziellen Mehrkosten, werden visualisiert. Dadurch werden die Szenarien untereinander quantitativ vergleichbar. Dies ermöglicht dem Produktionsplaner die Auswahl einer aus seiner Sicht sinnvollen Maßnahmenkombination.
Gegenüber den klassischen Systemen, z.B. MES und ERP, hat das Tool die folgenden Vorteile:
Zielgerichtete Entscheidungsunterstützung
Quantitative Vorhersage durch Simulation
Systematische Integration der Kostenermittlung und Liefertermintreue
Entgegen dem ursprünglichen Ziel, nur die Kosten des direkt durch die Störung betroffenen, verzögerten Auftrages zu betrachten, wurde in Absprache mit dem projektbegleitenden Ausschuss (pbA) entschieden, die finanzielle Auswirkung aller Aufträge zu berücksichtigen. Nur dadurch kann die Gesamtauswirkung der Maßnahmen vollständig untersucht und gegeneinander abgewogen werden. Diese Erweiterung der Zielstellung des Projektes stellt einen erheblichen Mehrwert im Vergleich zum ursprünglichen Forschungsvorhaben dar.
Das FIR an der RWTH Aachen und das Industrie 4.0 Maturity Center untersuchten Anfälligkeiten von Unternehmen gegenüber Krisensituationen: Die Expertise "Wertschöpfungsnetzwerke in Zeiten von Infektionskrisen" nimmst sich die COVID-19-Pandemie als Beispiel (Herausgeber Forschungsbeirat der Plattform Industrie 4.0 / acatech - Deutsche Akademie der Technikwissenschaften). In einer empirischen Fragebogenstudie wurden im Zeitraum von Mitte November 2020 bis Mitte Januar 2021 Unternehmen hinsichtlich der Auswirkungen der COVID-19-Pandemie befragt. Unter anderem sollte die Relevanz und der aktuelle Umsetzungsstand potenzieller Maßnahmen zur Steigerung der Resilienz eingeschätzt werden. An dieser Befragung nahmen vorwiegend produzierende Unternehmen unterschiedlicher Größe und aus verschiedenen Branchen u. a. Maschinen- und Anlagenbau, Automobil-, Konsumgüter- und Metallindustrie teil. Auf Basis dieser Ergebnisse wurden Potenziale und Handlungsoptionen identifiziert, die Unternehmen bei der resilienten Gestaltung ihrer Wertschöpfungsnetzwerke unterstützen können.