Refine
Year of publication
Document Type
- Article (9)
- Book (4)
- Part of a Book (25)
- Conference Proceeding (86)
- Contribution to a Periodical (17)
- Doctoral Thesis (1)
- Lecture (4)
- Internet Paper (4)
- Preprint (1)
- Report (2)
Language
- German (63)
- English (95)
- Multiple languages (2)
Is part of the Bibliography
- no (160)
Keywords
- 02 (19)
- 03 (3)
- 3GPP (1)
- 5G (5)
- 5G mobile communication (2)
- 5G use case (1)
- 5G-Mobilfunk (1)
- 5G-Technology (1)
- AI (2)
- Aachener PPS-Modell (1)
Institute
- Business Transformation (14)
- Dienstleistungsmanagement (35)
- FIR e. V. an der RWTH Aachen (160)
- Informationsmanagement (43)
- Produktionsmanagement (72)
Die Globalisierung und der steigende Wettbewerbsdruck erfordern, dass Supply Chains heutzutage komplexe Anforderungen erfüllen. Dabei müssen sie gleichzeitig flexibel genug sein, um an kurzfristige Veränderungen angepasst werden zu können. Ein unternehmensübergreifender Datenaustausch ermöglicht den Akteuren durch schnelle Informationsweitergabe über auftretende Ereignisse entlang der Supply Chain, dynamisch auf aktuelle Gegebenheiten zu reagieren und dadurch hervorgerufene mögliche Schäden zu minimieren. Auch wenn viele Unternehmen mit der Bereitstellung von Daten noch zurückhaltend sind, gehen die Vorteile des Datenaustauschs weit über die Verkürzung der Reaktionszeit hinaus.
Das Gegenteil von Theorie ist die Praxis. So sagt man landläufig und unterstellt damit oft, dass wissenschaftiche Erkenntnisse nicht immer für den Alltag taugen. Dass Theorie aber nicht gleich Theorie ist und Wissenschaft und Praxis trotz aller Unterschiedlichkeit aufeinander angewiesen sind, darauf weist das
FIR an der RWTH Aachen schon mit der Auflösung seines Akronyms hin: „Forschung. Innovation. Realisierung."
Due to shorter product life cycles and the increasing internationalization of competition, companies are confronted with increasing complexity in supply chain management. Event-based systems are used to reduce this complexity and to support employees' decisions. Such event-based systems include tracking & tracing systems on the one hand and supply chain event management on the other. Tracking & tracing systems only have the functions of monitoring and reporting deviations, whereas supply chain event management systems also function as simulation, control, and measurement. The central element connecting these systems is the event. It forms the information basis for mapping and matching the process sequences in the event-based systems. The events received from the supply chain partner form the basis for all downstream steps and must, therefore, contain the correct data. Since the data quality is insufficient in numerous use cases and incorrect data in supply chain event management is not considered in the literature, this paper deals with the description and typification of incorrect event data. Based on a systematic literature review, typical sources of errors in the acquisition and transmission of event data are discussed. The results are then applied to event data so that a typification of incorrect event types is possible. The results help to significantly improve event-based systems for use in practice by preventing incorrect reactions through the detection of incorrect event data.
Companies operate in an increasingly volatile environment where different developments like shorter product lifecycles, the demand for customized products and globalization increase the complexity and interconnectivity in supply chains. Current events like Brexit, the COVID-19 pandemic or the blockade of the Suez canal have caused major disruptions in supply chains. This demonstrates that many companies are insufficiently prepared for disruptions. As disruptions in supply chains are expected to occur even more frequently in the future, the need for sufficient preparation increases. Increasing resilience provides one way of dealing with disruptions. Resilience can be understood as the ability of a system to cope with disruptions and to ensure the competitiveness of a company. In particular, it enables the preparation for unexpected disruptions. The level of resilience is thereby significantly influenced by actions initiated prior to a disruption. Although companies recognize the need to increase their resilience, it is not systematically implemented. One major challenge is the multidimensionality and complexity of the resilience construct. To systematically design resilience an understanding of the components of resilience is required. However, a common understanding of constituent parts of resilience is currently lacking. This paper, therefore, proposes a general framework for structuring resilience by decomposing the multidimensional concept into its individual components. The framework contributes to an understanding of the interrelationships between the individual components and identifies resilience principles as target directions for the design of resilience. It thus sets the basis for a qualitative assessment of resilience and enables the analysis of resilience-building measures in terms of their impact on resilience. Moreover, an approach for applying the framework to different contexts is presented and then used to detail the framework for the context of procurement.
The environment in which companies operate is increasingly volatile and complex. This results in an increased exposure to disruptions. Past disruptions have especially affected procurement. Thus, companies need to prepare for disruptions. The preparedness for disruptions in the context of procurement is significantly influenced by the design of the procurement strategy. However, a high number of purchased articles and a variety of influencing factors lead to high complexity in procurement. The systematic design of the procurement strategy should therefore take into account the criticality of the purchased articles. This enables to focus on the purchased articles that have a high impact on the disruption preparedness. Existing approaches regarding the design of the procurement strategy in uncertain environments either lack practical applicability and objective evaluation or focus on the criticality of raw materials rather than of purchased articles. Therefore, a data-based approach for the systematic design of the procurement strategy in the context of the Internet of Production has been proposed. One central aspect of this approach is the identification of success-critical purchased articles. Thus, this paper proposes a framework for characterizing purchased articles regarding supply risks by combining two systematic analyses. First, a systematic literature review is performed to answer the question of what factors can be used to describe the supply risks of purchased articles. The results are analyzed regarding sources and impacts of risks and thus contribute to a structured characterization of supply risks. Second, existing criticality assessment approaches for raw materials are analyzed to identify categories and indicators that describe purchased articles. The results of both reviews provide the basis for linking product characteristics with supply risks and assessing product criticality which will be integrated into an app prototype.
Task-Specific Decision Support Systems in Multi-Level Production Systems based on the digital shadow
(2019)
Due to the increasing spread of Information and Communication Technologies (ICT) suitable for shop floors, the production environment can more easily be digitally connected to the various decision making levels of a production system. This connectivity as well as an increasing availability of high-resolution feedback data, can be used for decision support for all levels of the company and supply chain. To enable data driven decision support, different data sources were structured and linked. The data was combined in task-specific digital shadows, selecting clustering and aggregation rules to gain information. Visual interfaces for task-specific decision support systems (DSS) were developed and evaluated positively by domain experts. The complexity of decision making on different levels was successfully reduced as an effect of the processed amounts of data. These interfaces support decision making, but can additionally be improved if DSS are extended with smart agents as proposed in the Internet of Production.
In the food industry, a very large potential of data ecosystems is seen, in which data is understood, exchanged and monetized as an economic asset. However, despite the enormous economic potential, companies in the food industry continue to rely on traditional, product-oriented business models. Existing data in the value chain of industrial food production, e.g., in harvesting, logistics, and production processes, is primarily used for internal optimization and is not monetized in the form of data products. Especially the pricing of data products is a key challenge for data-based business models due to their special characteristics compared to conventional, analog offerings and multiple design options. The goal of this work is therefore to solve this issue by developing a framework that allows the identification of pricing models for data products in the industrial food production. For this purpose, following the procedure of typology formation, essential design parameters and the respective characteristics are derived. Furthermore, three types for pricing models of data products are shown. The results will serve not only stakeholders in the food industry but also manufacturing companies in general as input for an orientation of their databased business models.
Eine wesentliche Bedingung zur Optimierung der Wertschöpfungsprozesse ist die Transparenz über die leistungsbestimmenden Faktoren eines Unternehmens. Die Ermittlung dieser Faktoren stellt für viele Industriebetriebe eine Herausforderung dar. Im Rahmen der Veröffentlichung wird daher eine Vorgehensweise zur systematischen Identifikation von Einflussfaktoren der Unternehmenskennzahlen vorgestellt, welche die Grundlage zur Ableitung von individuellen Stellhebeln zur Steigerung der Unternehmensleistungsfähigkeit darstellt.