Refine
Year of publication
Document Type
- Conference Proceeding (88)
- Part of a Book (25)
- Contribution to a Periodical (17)
- Article (10)
- Working Paper (7)
- Book (4)
- Lecture (4)
- Internet Paper (4)
- Report (2)
- Doctoral Thesis (1)
Language
- English (98)
- German (63)
- Multiple languages (2)
Is part of the Bibliography
- no (163)
Keywords
- 02 (19)
- 03 (4)
- 3GPP (1)
- 5G (5)
- 5G mobile communication (2)
- 5G use case (1)
- 5G-Mobilfunk (1)
- 5G-Technology (1)
- AI (2)
- Aachener PPS-Modell (1)
Institute
- FIR e. V. an der RWTH Aachen (163)
- Produktionsmanagement (73)
- Informationsmanagement (43)
- Dienstleistungsmanagement (37)
- Business Transformation (14)
Due to shorter product life cycles and the increasing internationalization of competition, companies are confronted with increasing complexity in supply chain management. Event-based systems are used to reduce this complexity and to support employees' decisions. Such event-based systems include tracking & tracing systems on the one hand and supply chain event management on the other. Tracking & tracing systems only have the functions of monitoring and reporting deviations, whereas supply chain event management systems also function as simulation, control, and measurement. The central element connecting these systems is the event. It forms the information basis for mapping and matching the process sequences in the event-based systems. The events received from the supply chain partner form the basis for all downstream steps and must, therefore, contain the correct data. Since the data quality is insufficient in numerous use cases and incorrect data in supply chain event management is not considered in the literature, this paper deals with the description and typification of incorrect event data. Based on a systematic literature review, typical sources of errors in the acquisition and transmission of event data are discussed. The results are then applied to event data so that a typification of incorrect event types is possible. The results help to significantly improve event-based systems for use in practice by preventing incorrect reactions through the detection of incorrect event data.
In Germany’s transition to a more sustainable industrial landscape, electricity generated by wind turbines (WT) remains a mainstay of the energy mix. Operating and maintenance costs, which account for roughly 25% of electricity generation costs in onshore WTs make improvements of maintenance activities a key lever in the economic operation of WTs. Prescriptive maintenance is a possible approach for improved maintenance activities. It is a concept where asset condition data is used to recommend specific actions and has great potential for the operation of wind parks. However, especially small, but also large wind park operators, and maintenance service providers often struggle with the implementation of such a new maintenance approach. As a part of the research project ReStroK, a learning game has been developed to support the training and familiarization of maintenance technicians with the concepts and underlying principles of this maintenance approach. In this paper, the concept for the development of a learning game will be presented. Multiple scenarios for its usage and their corresponding requirements will be discussed and an overview over the game will be given.
Industry 4.0 and Smart Maintenance represent a great opportunity to make manufacturing and maintenance more effective, safer, and reliable. However, they also represent massive change and corresponding challenges for industrial companies, as many different options and starting points have to be weighed and the individual right paths for achieving Smart Maintenance need to be identified. In our paper, we describe our approach to evaluating maintenance organizations in a case study for the oil and gas industry, developing a shared vision for the future, and deriving economical and effective measures. We will demonstrate our approach, by showcasing a specific example from the oil and gas industry, where a need for action on HSE-relevant critical flanges in the company's piping systems was identified. We describe the steps, that were taken to identify the need for action, the specifications of the project and the criticality analysis of the piping system. This resulted in the derivation of a digitalization measure for critical flanges, which was first commercially analyzed and then the flanges were equipped with a continuous monitoring solution. Finally, a conclusion is drawn on the performed procedure and the achieved improvements.
Subscription business transforms traditional business models of machinery and plant engineering. Many manufacturing companies struggle to pull out the potential created by Industry 4.0 and make it economically usable. In addition to technological innovations, it is necessary to transform the business model. This leads to a shift from ownership-based and product-centric business models to outcome-based business models, which focus on the customer's value and thus realize a unique value proposition and competitive advantage – the outcome economy. Based on a case study analysis among manufacturing companies, this paper provides further clarification including a definition and constituent characteristics of subscription business models in machinery and plant engineering.
In the food industry, a very large potential of data ecosystems is seen, in which data is understood, exchanged and monetized as an economic asset. However, despite the enormous economic potential, companies in the food industry continue to rely on traditional, product-oriented business models. Existing data in the value chain of industrial food production, e.g., in harvesting, logistics, and production processes, is primarily used for internal optimization and is not monetized in the form of data products. Especially the pricing of data products is a key challenge for data-based business models due to their special characteristics compared to conventional, analog offerings and multiple design options. The goal of this work is therefore to solve this issue by developing a framework that allows the identification of pricing models for data products in the industrial food production. For this purpose, following the procedure of typology formation, essential design parameters and the respective characteristics are derived. Furthermore, three types for pricing models of data products are shown. The results will serve not only stakeholders in the food industry but also manufacturing companies in general as input for an orientation of their databased business models.
Task-Specific Decision Support Systems in Multi-Level Production Systems based on the digital shadow
(2019)
Due to the increasing spread of Information and Communication Technologies (ICT) suitable for shop floors, the production environment can more easily be digitally connected to the various decision making levels of a production system. This connectivity as well as an increasing availability of high-resolution feedback data, can be used for decision support for all levels of the company and supply chain. To enable data driven decision support, different data sources were structured and linked. The data was combined in task-specific digital shadows, selecting clustering and aggregation rules to gain information. Visual interfaces for task-specific decision support systems (DSS) were developed and evaluated positively by domain experts. The complexity of decision making on different levels was successfully reduced as an effect of the processed amounts of data. These interfaces support decision making, but can additionally be improved if DSS are extended with smart agents as proposed in the Internet of Production.
Factory automation and production are currently
undergoing massive changes, and 5G is considered being a key
enabler. In this paper, we state uses cases for using 5G in the
factory of the future, which are motivated by actual needs of the
industry partners of the “5Gang” consortium. Based on these use
cases and the ones by 3GPP, a 5G system architecture for the
factory of the future is proposed. It is set in relation to existing
architectural frameworks.
Ongoing digitalization and Industry 4.0 enable the development of new business models due to the increase in available data and digital connected products. A promising business model type for the machinery and plant engineering industry are subscription models, consisting of products and services offered in return for continuous payments. However, subscription-based business models are associated with extensive changes in the traditional machinery and plant engineering industry, in particular, for small and medium-sized companies (SMEs). Established concepts for the development of value propositions and business models neglect important aspects, such as the integrated development and optimization of products and services across the entire life cycle or the data infrastructure. This paper presents a concept for a methodology to support SMEs developing value propositions within subscription models. Therefore, the systematic identification of customer benefits, the determination and prioritization of subscription relevant functionalities as well as the design of product and service elements addressing those functionalities are the main aspects on which the focus is placed on. The result is a subscription value proposition canvas for SMEs to address the impact of subscription models on products and services.
Klar Schiff
(2009)
Im Rahmen dieser Studie untersuchten das Forschungsinstitut für Rationalisierung e. V. an der RWTH Aachen und die Universität St. Gallen
(Lehrstuhl Produktionsmanagement) 24 Veröffentlichungen von 11 Beratungsunternehmen. Dabei wurden über 200 Aussagen zur Bewältigung der Krise bewertungsneutral identifiziert und analysiert.