Refine
Year of publication
Document Type
- Conference Proceeding (97)
- Part of a Book (25)
- Contribution to a Periodical (19)
- Article (13)
- Working Paper (8)
- Lecture (5)
- Book (4)
- Internet Paper (3)
- Report (2)
- Doctoral Thesis (1)
Language
- English (110)
- German (66)
- Multiple languages (2)
Is part of the Bibliography
- no (178)
Keywords
- 02 (20)
- 03 (6)
- 3GPP (1)
- 5G (5)
- 5G mobile communication (2)
- 5G technology (1)
- 5G use case (1)
- 5G-Mobilfunk (1)
- 5G-Technology (1)
- AI (3)
Institute
- FIR e. V. an der RWTH Aachen (178)
- Produktionsmanagement (76)
- Informationsmanagement (47)
- Dienstleistungsmanagement (42)
- Business Transformation (15)
Driven by different trends, such as digitalization, the number of companies aiming for successful business transformation is increasing, while new structures and systems are paving the way. Strategic agile management systems offer significant potential benefits given the increasing speed of the evolving environment in which organizations find themselves these days. To select and implement the appropriate strategic agile management system, companies need to understand the underlying theoretical principles to be able to select the most suitable for the respective company and to introduce it based on individual adaption. Within this paper, a morphology is presented to improve theoretical knowledge about strategic agile management systems. Creating a common understanding of strategic agile management systems and their current areas of application creates a suitable frame of reference for future research projects.
Factory automation and production are currently undergoing massive changes, and 5G is considered being a key enabler. In this paper, we state uses cases for using 5G in the factory of the future, which are motivated by actual needs of the industry partners of the “5Gang” consortium. Based on these use cases and the ones by 3GPP, a 5G system architecture for the factory of the future is proposed. It is set in relation to existing architectural frameworks.
The operation of CNC milling is expensive because of the cost-intensive use of cutting tools. The wear and tear of CNC tools influence the tool lifetime. Today’s machines are not capable of accurately estimating the tool abrasion during the machining process. Therefore, manufacturers rely on reactive maintenance, a tool
change after breakage, or a preventive maintenance approach, a tool change according to predefined tool specifications. In either case, maintenance costs are high due to a loss of machine utilization or premature tool change. To find the optimal point of tool change, it is necessary to monitor CNC process parameters during machining and use advanced data analytics to predict the tool abrasion. However, data science expertise is limited in small-medium sized manufacturing companies. The long operating life of machines often does not justify investments in new machines before the end of operating life. The publication describes a cost-efficient approach to upgrade legacy CNC machines with a Tool Wear Prediction Upgrade Kit. A practical solution is presented with a holistic hardware/software setup, including edge device, and multiple sensors. The prediction of tool wear is based on machine learning. The user interface visualizes the machine condition for the maintenance personnel in the shop floor. The approach is conceptualized and discussed based on industry requirements. Future work is outlined.
A large number of product-accompanying services in the machinery and plant engineering industry is based on the cross-company exchange of data and information. By providing services, additional sales potential on the manufacturer side as well as far-reaching product and process advantages for appliers can be reached. However, the necessary cross-company exchange of information is nowadays limited due to a lack of trust in the interacting partner and the applicable existing technologies, which results in significant losses in the terms of business potential. The uncovering of this potential now seems to be made possible by the use of the Blockchain technology. Through the key factors security, immutability, transparency and decentralisation, it serves as an enabler for cross-company communication and product-accompanying services. The technological implementation of a Blockchain can take on a broad spectrum of attributes, which can lead to decisive restrictions for the execution of services. This justifies the necessity for a qualified and context-related assessment of service-types-individual specifications and the resulting requirements on the system. Within the scope of this paper, different types of product-accompanying services are identified and analysed regarding their requirements for a Blockchain-based machinery and plant connection. This can serve as a basis for a qualified and goal-oriented configuration of the Blockchain.
Since 2016, the “Digital in NRW” Competence Centre has been supporting SMEs in the manufacturing industry in designing their individual digital transformation. With an Industry 4.0 maturity assessment, we define the status quo of SMEs, derive SME-specific measures from this, develop a digitalization roadmap and accompany the SME transformation. This paper presents the results of the four-year SME support. By analyzing the results of all maturity assessments, potential analysis and design workshops, we present the most frequent and most effective measures for a successful digital transformation of SMEs. The result of the paper is an action guideline for SMEs to initiate their own digital transformation based on formalized experience.
Many ERP systems support configurable materials. Due to an ever increasing number of product variants the benefits of this approach are well understood. However, these implementations are not standardized. In this article we propose a new standard interface for the exchange of configuration data. This would lead to further benefits as systems as Advanced Planning systems could better use manufacturing flexibility while web shops as Amazon could easily integrate manufacturers of complex products with much reduced implementation effort.
The fifth generation of mobile communication (5G) is expected to bring immense benefits to automated guided vehicles by improving existing respectively enabling 5G-distinctive network control systems, leading to higher productivity and safety. However, only 1% of production companies have fully deployed 5G yet. Most companies currently lack an understanding of return on investment and of technical use-case benefits. Therefore, this paper analyses the influence of 5G on an automated guided vehicle use case based on a five-step evaluation model. The analysis is conducted with a use case in the Digital Experience Factory in Aachen. It shows a difference of net present value between 4G and 5G of 1.3 M€ after 10 years and a difference of return of investment of 66%. Furthermore, analysis shows an increase of mobility (13%), productivity (20%) and safety (136%). This indicates a noticeable improvement of a 5G-controlled automated guided vehicle compared to a 4G-controlled automated guided vehicle.
Service Engineering Models
(2019)
Since the field of service engineering emerged in the late 20th century, the service industry has undergone drastic changes. Among the reasons for these changes is the increasing digitalization, which has made it difficult for companies to successfully develop new service offerings. While numerous service engineering models are available to provide guidance during the design of new services, many of them cannot keep up with the requirements of today’s economic environment. The present paper examines the requirements that service engineering models need to meet in order to be suitable guidelines for the digital age. To this end, the introduction illustrates how digitalization has changed the service industry. Afterwards, selected service engineering models and related norms are presented. Finally, a set of requirements for modern service engineering models derived from best practices from recent years is introduced.
Electricity generated by wind turbines (WT) is a pillar of the transition to renewable energy [1]. In order to economically utilize WTs, operating and maintenance costs, which account for 25% of total electricity generation costs in onshore WTs, are a focus of cost reduction activities [2]. A prescriptive maintenance approach can support in achieving this goal. Prescriptive maintenance is a maintenance approach, where asset condition data is collected and analyzed to recommend specific actions to prevent breakdowns and reduce downtimes. However, the processing and analysis of data is quite complex. Especially unstructured data (such as comments of service technicians in free text fields) is often left unused, as companies, mostly SMEs lack the capacity to carry out these analyses. In this work we propose an approach to utilize the information from service reports, maintenance reports as well as status records from SCADA systems for the development of a prescriptive maintenance approach to onshore WTs. To achieve this, an ontology was utilized in this approach to codify implicit knowledge of service technicians and aid in making unstructured data usable for further analysis. The ontology was used to link historical service and maintenance reports with status codes, thus enabling automated analysis. In interviews with WT topic experts and through further research, damage mechanisms and corresponding maintenance measures were identified and a measure catalogue was developed to support service and maintenance activities. The recognition of the root cause of problems allows for a prescriptive maintenance approach that recommends targeted actions to reduce downtimes and optimize maintenance activities, it also allows to effectively control the outcome of maintenance activities and optimize their execution.