004 Datenverarbeitung; Informatik
Refine
Document Type
- Part of a Book (1)
- Conference Proceeding (3)
Is part of the Bibliography
- no (4)
Keywords
- 02 (2)
- Data ecosystem (1)
- Datenanalytik (1)
- Digital sovereignty (1)
- Energieinformationssysteme (1)
- Energiemanagement (1)
- Energiewende (1)
- Event-driven IT-Architecture (1)
- IT OT Integration (1)
- Industrie 4.0 (1)
Institute
With the development of publicly accessible broker systems within the last decade, the complexity of data-driven ecosystems is expected to become manageable for self-managed digitalisation. Having identified event-driven IT-architectures as a suitable solution for the architectural requirements of Industry 4.0, the producing industry is now offered a relevant alternative to prominent third-party ecosystems. Although the technical components are readily available, the realisation of an event-driven IT-architecture in production is often hindered by a lack of reference projects, and hence uncertainty about its success and risks. The research institute FIR and IT-expert synyx are thus developing an event-driven IT-architecture in the Center Smart Logistics' producing factory, which is designed to be a multi-agent testbed for members of the cluster. With the experience gained in industrial projects, a target IT-architecture was conceptualised that proposes a solution for a self-managed data-ecosystem based on open-source technologies. With the iterative integration of factory-relevant Industry 4.0 use cases, the target is continuously realised and validated. The paper presents the developed solution for a self-managed event-driven IT-architecture and presents the implications of the decisions made. Furthermore, the progress of two use cases, namely an IT-OT-integration and a smart product demonstrator for the research project BlueSAM, are presented to highlight the iterative technical implementability and merits, enabled by the architecture.
Manufacturing companies face the challenge of managing vast amounts of unstructured data generated by various sources such as social media, customer feedback, product reviews, and supplier data. Text-mining technology, a branch of data mining and natural language processing, provides a solution to extract valuable insights from unstructured data, enabling manufacturing companies to make informed decisions and improve their processes. Despite the potential benefits of text mining technology, many manufacturing companies struggle to implement use cases due to various reasons. Therefore, the project VoBAKI (IGF-Project No.: 22009 N) aims to enable manufacturing companies to identify and implement text mining use cases in their processes and decision-making processes. The paper presents an analysis of text mining use cases in manufacturing companies using Mayring's content analysis and case study research. The study aims to explore how text mining technology can be effectively used in improving production processes and decision-making in manufacturing companies.
Durch die Energiewende und Digitalisierung bedingt, ergeben sich neue Anforderungen an das industrielle Energiemanagement, wobei insbesondere die Energieinformationssysteme (EnIS) mehr leisten müssen.
Die zentrale Herausforderung liegt dabei in der Übersetzung der Datenbasis in konkrete Handlungsempfehlungen, was durch die Integration einer Datenanalytik (DA) in ein EnIS realisiert werden soll. In diesem Paper werden die damit verbundenen Anforderungen beschrieben und Lösungsansätze zur Integration einer DA vorgestellt.
The operation of CNC milling is expensive because of the cost-intensive use of cutting tools. The wear and tear of CNC tools influence the tool lifetime. Today’s machines are not capable of accurately estimating the tool abrasion during the machining process. Therefore, manufacturers rely on reactive maintenance, a tool
change after breakage, or a preventive maintenance approach, a tool change according to predefined tool specifications. In either case, maintenance costs are high due to a loss of machine utilization or premature tool change. To find the optimal point of tool change, it is necessary to monitor CNC process parameters during machining and use advanced data analytics to predict the tool abrasion. However, data science expertise is limited in small-medium sized manufacturing companies. The long operating life of machines often does not justify investments in new machines before the end of operating life. The publication describes a cost-efficient approach to upgrade legacy CNC machines with a Tool Wear Prediction Upgrade Kit. A practical solution is presented with a holistic hardware/software setup, including edge device, and multiple sensors. The prediction of tool wear is based on machine learning. The user interface visualizes the machine condition for the maintenance personnel in the shop floor. The approach is conceptualized and discussed based on industry requirements. Future work is outlined.