Lennard Holst
Refine
Document Type
- Conference Proceeding (16)
- Contribution to a Periodical (8)
- Working Paper (7)
- Part of a Book (6)
- Report (3)
- Internet Paper (2)
- Book (1)
Language
- German (21)
- English (20)
- Multiple languages (2)
Is part of the Bibliography
- no (43)
Keywords
- 01 (2)
- 02 (8)
- 03 (3)
- AI (1)
- Additive manufacturing (1)
- After-Sales-Services (1)
- Artificial intelligence (1)
- Asset Management (1)
- Augmented Reality (1)
- Augmented reality (1)
Institute
Customer Insights Management
(2021)
In der digitalen Welt sind Customer-Insights der Schlüssel zu einem umfassenden 360°-Kundenverständnis. Doch bereits die simple Frage „Wer ist eigentlich mein Kunde?“ kann speziell in produzierenden Unternehmen zu hitzigen Diskussionen führen: „Der Händler? Nein! Der Einkäufer? Oder doch der Produktnutzer?“ Eine Klärung dieser Frage ist der erste Schritt auf dem Weg zu mehr Kundenverständnis und zu Customer-Insights.
Das allgemeine Zielbild für den Service ist klar: Das Angebot kundenzentrierter Leistungen stärkt die Kundenbindung und sichert langfristige, kontinuierliche Einnahmen. Um dieses Zielbild auf die Gegebenheiten eines einzelnen Unternehmens herunterzubrechen, sind die jeweils angestrebten Serviceziele in der Unternehmensstrategie zu verankern, um darauf aufbauend Maßnahmen und Leistungen zu definieren, mit denen diese Ziele erreicht werden sollen. Wie können Unternehmen die notwendigen Maßnahmen identifizieren, um ihr Zielbild umzusetzen? Welche Zwischenschritte sind in der Digitalisierung im Bereich Service notwendig und wie hängen diese voneinander ab? Um diese Fragen zu beantworten, ist es notwendig, die Zusammenhänge und Wechselspiele einzelner Prozesse zu verstehen sowie die eigenen Fähigkeiten einzuschätzen.
KVD TrendRadar: Ausgabe 2023
(2023)
Das Ziel des Forschungsprojekts "Future Data Assets" bestand in der monetären Bewertung des unternehmerischen Datenkapitals. Dazu wurden die Entwicklung und Instanziierung einer sogenannten "Datenbilanz" angestrebt. Die Datenbilanz soll dem Reporting der unternehmerischen Fähigkeit der Datenbewirtschaftung dienen und damit eine Lücke im Hinblick auf die klassische Berichterstattung schließen, in der Daten kaum betrachtet bzw. systematisch bewertet werden.
Ziel des Forschungsprojekts ‚DM4AR‘ war es, Servicewissen skalierbar und einfach nutzbar zu machen, indem automatisch Augmented-Reality-Inhalte aus verschiedenen Datenquellen generiert werden.
Nutzen für die Zielgruppe:
Durch die Ergebnisse des Projekts ‚DM4AR‘ kann zukünftig die wesentliche Barriere für die flächendeckende und produktive Nutzung der AR-Technologie durch die Etablierung eines plattformbasierten und automatisierten Ansatzes zur Datenaufbereitung überwunden werden. Dabei steht die einfache Integration in den operativen Serviceprozess im Vordergrund, um den Nutzen zu maximieren und die Umstellung der Serviceprozesse zu vereinfachen. Die ‚DM4AR‘-Ergebnisse ermöglichen somit die Sicherung und den gezielten Einsatz des im Unternehmen vorhandenen Wissens.
33 Prozent aller Unternehmen glauben, den Anschluss an Künstliche Intelligenz (KI) zu verlieren. Obwohl KI auf den ersten Blick eine Herausforderung darstellt, kann sie vor allem im Unternehmenskontext eine bedeutende Rolle spielen. Genau da setzt das Programm "KI-Serviceroadmap 2024" des FIR an und zeigt Ihnen den Weg zu KI im Service auf. Das Programm beginnt für alle teilnehmenden Unternehmen mit einem umfassenden Assessment und mündet in der Entwicklung einer detaillierten Roadmap mit Ihrem individuellen Weg zu KI.
Pricing is one of the most important, but underestimated tools, to enhance a company's profitability. Especially value-based pricing has a high potential to reach higher levels of satisfaction because it equates the needs of providers and customers. Even though, it is a well-known price model and promises higher satisfaction, many companies struggle to implement it. Especially the manufacturing industry is characterized by cost-plus pricing and competition-based pricing. However, especially for digital products these pricing strategies are insufficient. Therefore, this paper aims at exploring the design fields for value-based pricing of digital products in the manufacturing industry. To achieve this, the basics of digital products and value-based pricing are explored. Furthermore, an expert workshop is conducted that follows a framework for value-based pricing consisting of four consecutive steps analysis, price strategy, pricing, and market launch to capture the design fields. This paper concludes with limitations, and practical and research implications.
ZusammenfassungDieser Beitrag stellt dar, welche Chancen und Herausforderungen mit der Bewertung von Daten sowie der Abbildung monetärer Datenwerte verbunden sind und geht auf mögliche Lösungsansätze zur Bewertung von Unternehmensdatenbeständen, insbesondere im Kontext der industriellen Produktion, ein. Zunächst werden Grundlagen zur Charakterisierung, Nutzung und Verwertung von Daten sowie bestehende Methoden zur Bewertung von immateriellen Vermögensgegenständen dargestellt. Darauf aufbauend werden Chancen und Herausforderungen spezifiziert, potenzielle Lösungsansätze zur Datenbewertung abgeleitet und anschließend Anforderungen für die Datenbewertung beschrieben sowie die nutzenorientierte Datenbewertung skizziert.
Towards a Methodology to Determine Intersubjective Data Values in Industrial Business Activities
(2021)
This paper contributes to a valuation framework for valuing data as an intangible asset. Especially those industrial manufacturers developing and delivering holistic digital solutions are limited in calculating the true business value of data initiatives. Since the value of data is strongly dependent on the respective use case, a completely objective valuation is not possible. This complicates decision-making on the internal side regarding investments in digital transformation, and on the external side to communicate existing benefits to third parties via financial reporting. Therefore, the target is to design a valuation framework that allows industrial manufacturers to determine an intersubjective, i.e., traceable and transparent, data value. In order to develop a framework that can be applied in practice, the approach is based on industrial case study research.
The mechanical and plant engineering industry faces a stagnation in the new machinery market and is relying on innovative business models such as subscription to overcome these. In this business model, individually customized solution packages are offered. The success of these models depends directly on the future success of the customer, making the selection of the right customers crucial. The aim of this paper is to identify the criteria that indicate the suitability of customers for subscription models. While there are individual descriptions of suitability criteria in the existing literature, there is a lack of comprehensive consideration of customer relationship, customer company, and customer market, as the extensive consideration was not necessary in the transactional sale of machines until now. Therefore, in this study, expert interviews are conducted with companies in mechanical and plant engineering that offer subscription models. The results show criteria that are used to evaluate customers in the six main categories of creditworthiness, market potential, benefit potential, feasibility, relationship, and sales effort. In total, 24 criteria can provide insight into the suitability of the customer for a successful subscription relationship. These criteria are intended to develop target systems that meet the requirements of different stakeholders in the customer and thus support the economic viability of these business models.