Maximilian Schacht
Refine
Document Type
- Book (1)
- Part of a Book (3)
- Conference Proceeding (2)
- Contribution to a Periodical (5)
- Doctoral Thesis (1)
- Internet Paper (2)
- Report (2)
- Working Paper (1)
Language
- German (13)
- English (2)
- Multiple languages (2)
Is part of the Bibliography
- no (17)
Keywords
- 01 (3)
- 02 (3)
- 03 (1)
- 04 (1)
- 5G (1)
- Additive Fertigung (1)
- Augmented Reality (1)
- Cloud-Computing (1)
- Crowd-Innovation (1)
- Cybersecurity (1)
Institute
Digital Servitization is one of the significant trends affecting the manufacturing industry. Companies try to tackle challenges regarding their differentiation and profitability using digital services. One specific type of digital services are smart services, which are digital services built on data from smart products. Introducing these kinds of offerings into the portfolio of manufacturing companies is not trivial. Moreover, they require conscious action to align all relevant capabilities to realize the respective business goals. However, what capabilities are generally relevant for smart services remains opaque. We conducted a systematic literature review to identify them and extended the results through an interview study. Our analysis results in 78 capabilities clustered among 12 principles and six dimensions. These results provide significant support for the smart service transformation of manufacturing companies and for structuring the research field of smart services.
Daten als Ressource
(2023)
Obwohl immer mehr Unternehmen den Wert von Daten für sich entdecken und intern zu nutzen beginnen, wird dem Datenaustausch und der Datenmonetarisierung bisher wenig Aufmerksamkeit geschenkt. In diesem Beitrag werden die Kernergebnisse der Acatech-Expertise zu Aufbau, Nutzung und Monetarisierung der industriellen Datenbasis vorgestellt.
Die neue Expertise des Forschungsbeirats Industrie 4.0 bei der acatech beschäftigt sich mit der Frage, wie hiesige Unternehmen ihre Datenbasis aufbauen, nutzen und monetarisieren. Aus Umfrage-Erkenntnissen haben die Experten Handlungsoptionen abgeleitet, mit denen Firmen ihre Daten Schritt für Schritt in den Dienst der eigenen Wertschöpfung stellen können.
Smart Services – die effektive Trias aus Produkt, Service und kundenorientiertem Leistungsversprechen – bieten Chancen für produktionsorientierte Unternehmen eine Differenzierung und neue Marktchancen zu erreichen. Der bislang geringe Einsatz von Smart Services zeigt, dass im produzierenden Gewerbe vielschichtige Herausforderungen bestehen, die Bausteine Produkt, Service und Leistungsversprechen zu nachhaltigen und wettbewerbsfähigen Smart Services zu kombinieren, erfolgreiche Geschäftsmodelle abzuleiten und Organisationen auf das Smart-Service-Geschäft anzupassen. Nur die großen Player schaffen dies eigenständig, der Innovationsstandort Deutschland lebt aber auch von seinen Hidden Champions: Kleinunternehmen und Mittelständlern.
This chapter addresses the market launch and sales of smart services. It opens with an introduction of the new challenges that the market launch of smart services creates for companies. Then follows the discussion of a four-phase approach to the market launch of smart services. Subsequently, successful practices are presented for this approach along eight design fields of the market launch. [https://link.springer.com/chapter/10.1007/978-3-030-58182-4_8]
Um Transparenz über die Luftqualität im gesamten Stadtgebiet zu schaffen, fehlte ein engmaschiges Netz an Luftqualitätssensoren, welches lokale Problemzonen in Abhängigkeit der Tageszeit identifiziert. Im Rahmen des 'AirQuality'-Projekts führten der FIR e.V. an der RWTH Aachen und der kanadische Telematikanbieter Geotab GmbH einen Proof of Concept zur Entwicklung einer Methode durch, welche die Erhebung von Luftqualitätsdaten in bisher nicht vorhandener Granularität ermöglicht: Fahrzeugflotten, die innerhalb eines Stadtgebiets unterwegs sind – wie beispielsweise Fahrzeuge des Öffentlichen Personen Nahverkehrs (ÖPNV) – wurden mit Sensorik zur Erfassung der Luftqualität ausgestattet. Die so gesammelten Daten wurden analysiert und in einer über die Stadtkarte gelegten „Heatmap“ visualisiert. Mit dieser Luftqualitätskarte konnte die Luftqualität straßen- und uhrzeitgenau angezeigt werden. Durch die Ergebnisse des 'AirQuality'-Projekts ist es möglich, Orte mit erhöhter Feinstaubbelastung zu identifizieren und Maßnahmen zur Reduktion von Emissionen objektiv zu bewerten. Darüber hinaus bietet die feingranulare Datenerfassung eine Grundlage für verschiedene innovative Lösungen. Hierzu zählen beispielsweise auf aktuellen Luftqualitätswerten basierende Intelligente Lichtsignalanlagen oder optimierte Routenführungen für Bürger.
Unternehmen, die ihre Prozesse durch maschinelles Lernen unterstützen wollen und hierfür auf externe Dienstleister und Produkte zurückgreifen müssen, fehlen die qualifizierten Anhaltspunkte für die Auswahl eines Machine-Learning-Anbieters.
Aus dieser Motivation heraus ist die vorliegende Marktstudie Industrial Machine Learning entstanden. Sie bietet Unternehmen die Grundlage, eine fundierte Entscheidung für oder gegen den Einsatz von Machine Learning im Unternehmen zu
treffen.
Die Darstellung von realen Usecases in der vorliegenden Marktstudie veranschaulicht die konkrete Anwendbarkeit. Insbesondere damit leistet die Studie ihren Beitrag, das Thema Maschine Learning verständlich und anschaulich darzustellen.
Die Marktstudie bietet einen umfassenden Überblick über unterschiedliche Arten von Anbietern und Lösungsmöglichkeiten.
Ein Anspruch auf Vollständigkeit wird dabei nicht erhoben und wäre für die Zielsetzung nicht angebracht.
Ziel des Beitrags ist es, aufzuzeigen, wie produzierende Unternehmen entlang der Customer-Journey systematisch kundenbezogene Daten erheben können. Nach einer Einleitung zur Motivation der Themenstellung, einer Begriffserläuterung und einer Vorstellung des Studiendesigns wird ein Referenzprozessmodell der Kundeninteraktionen produzierender Unternehmen gestaltet, darauf aufbauend ein Datenmodell des digitalen Schattens der Kundeninteraktionen abgeleitet und zuletzt ein Vorgehensmodell zur Implementierung des digitalen Schattens der Kundeninteraktionen präsentiert.
Produzierende Unternehmen haben vielzählige Interaktionen mit ihren Kunden entlang der Customer-Journey. Der digitale Schatten der Kundeninteraktionen zeigt dabei entlang eines Referenzprozesses auf, welche Daten an welcher Stelle erhoben werden können und wie diese Daten logisch miteinander zu verknüpfen sind, um ein hinreichend genaues datenbasiertes Abbild ihrer Kunden zu erhalten. Damit können Bedürfnisse der Kunden analysiert und das Leistungsangebot optimiert werden.