Maximilian Schacht
Refine
Document Type
- Contribution to a Periodical (4)
- Part of a Book (2)
- Report (2)
- Book (1)
- Conference Proceeding (1)
- Doctoral Thesis (1)
- Working Paper (1)
Language
- German (9)
- Multiple languages (2)
- English (1)
Is part of the Bibliography
- no (12)
Keywords
- Digitalisierung (2)
- Crowd-Innovation (1)
- Datenbasierte Dienstleistung (1)
- Digitaler Schatten (1)
- Emission (1)
- Emissionsreduktion (1)
- Emissionsverringerung (1)
- Feinstaub (1)
- Feinstaubbelastung (1)
- Geschäftsmodelle (1)
Institute
This chapter addresses the market launch and sales of smart services. It opens with an introduction of the new challenges that the market launch of smart services creates for companies. Then follows the discussion of a four-phase approach to the market launch of smart services. Subsequently, successful practices are presented for this approach along eight design fields of the market launch. [https://link.springer.com/chapter/10.1007/978-3-030-58182-4_8]
Um Transparenz über die Luftqualität im gesamten Stadtgebiet zu schaffen, fehlte ein engmaschiges Netz an Luftqualitätssensoren, welches lokale Problemzonen in Abhängigkeit der Tageszeit identifiziert. Im Rahmen des 'AirQuality'-Projekts führten der FIR e.V. an der RWTH Aachen und der kanadische Telematikanbieter Geotab GmbH einen Proof of Concept zur Entwicklung einer Methode durch, welche die Erhebung von Luftqualitätsdaten in bisher nicht vorhandener Granularität ermöglicht: Fahrzeugflotten, die innerhalb eines Stadtgebiets unterwegs sind – wie beispielsweise Fahrzeuge des Öffentlichen Personen Nahverkehrs (ÖPNV) – wurden mit Sensorik zur Erfassung der Luftqualität ausgestattet. Die so gesammelten Daten wurden analysiert und in einer über die Stadtkarte gelegten „Heatmap“ visualisiert. Mit dieser Luftqualitätskarte konnte die Luftqualität straßen- und uhrzeitgenau angezeigt werden. Durch die Ergebnisse des 'AirQuality'-Projekts ist es möglich, Orte mit erhöhter Feinstaubbelastung zu identifizieren und Maßnahmen zur Reduktion von Emissionen objektiv zu bewerten. Darüber hinaus bietet die feingranulare Datenerfassung eine Grundlage für verschiedene innovative Lösungen. Hierzu zählen beispielsweise auf aktuellen Luftqualitätswerten basierende Intelligente Lichtsignalanlagen oder optimierte Routenführungen für Bürger.
Unternehmen, die ihre Prozesse durch maschinelles Lernen unterstützen wollen und hierfür auf externe Dienstleister und Produkte zurückgreifen müssen, fehlen die qualifizierten Anhaltspunkte für die Auswahl eines Machine-Learning-Anbieters.
Aus dieser Motivation heraus ist die vorliegende Marktstudie Industrial Machine Learning entstanden. Sie bietet Unternehmen die Grundlage, eine fundierte Entscheidung für oder gegen den Einsatz von Machine Learning im Unternehmen zu
treffen.
Die Darstellung von realen Usecases in der vorliegenden Marktstudie veranschaulicht die konkrete Anwendbarkeit. Insbesondere damit leistet die Studie ihren Beitrag, das Thema Maschine Learning verständlich und anschaulich darzustellen.
Die Marktstudie bietet einen umfassenden Überblick über unterschiedliche Arten von Anbietern und Lösungsmöglichkeiten.
Ein Anspruch auf Vollständigkeit wird dabei nicht erhoben und wäre für die Zielsetzung nicht angebracht.
Ziel des Beitrags ist es, aufzuzeigen, wie produzierende Unternehmen entlang der Customer-Journey systematisch kundenbezogene Daten erheben können. Nach einer Einleitung zur Motivation der Themenstellung, einer Begriffserläuterung und einer Vorstellung des Studiendesigns wird ein Referenzprozessmodell der Kundeninteraktionen produzierender Unternehmen gestaltet, darauf aufbauend ein Datenmodell des digitalen Schattens der Kundeninteraktionen abgeleitet und zuletzt ein Vorgehensmodell zur Implementierung des digitalen Schattens der Kundeninteraktionen präsentiert.
Produzierende Unternehmen haben vielzählige Interaktionen mit ihren Kunden entlang der Customer-Journey. Der digitale Schatten der Kundeninteraktionen zeigt dabei entlang eines Referenzprozesses auf, welche Daten an welcher Stelle erhoben werden können und wie diese Daten logisch miteinander zu verknüpfen sind, um ein hinreichend genaues datenbasiertes Abbild ihrer Kunden zu erhalten. Damit können Bedürfnisse der Kunden analysiert und das Leistungsangebot optimiert werden.
Daten sind das neue Öl. Aber wie werden die Potenziale der Daten in Industrie 4.0 genutzt? In der neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchten der FIR an der RWTH Aachen und das Industry 4.0 Maturity Center den Aufbau, die Nutzung und die Monetarisierung der industriellen Datenbasis. Mithilfe einer Umfrage sowie Experteninterviews ermittelte das Projektteam den aktuellen Stand und die Herausforderungen deutscher Unternehmen hinsichtlich der Nutzung und der wirtschaftlichen Verwertung von industriellen Daten. Darauf aufbauend wurden Handlungsoptionen dazu erarbeitet, wie produzierende Unternehmen den Nutzungsgrad ihrer Datenbasis erhöhen sowie Potenziale bei der Monetarisierung ausschöpfen können. Darüber hinaus gibt die Studie Impulse dazu, welchen Beitrag Politik, Wissenschaft und Verbände leisten können.
In der neuen Expertise des Forschungsbeirats Industrie 4.0 untersuchen das FIR e. V. an der RWTH Aachen und das Industrie 4.0 Maturity Center den Status-quo und die aktuellen Herausforderungen der deutschen Industrie bei der Nutzung und wirtschaftlichen Verwertung von industriellen Daten. Handlungsoptionen für Unternehmen, Verbände, Politik und Wissenschaft zeigen auf, wie der Nutzungsgrad der Datenbasis erhöht werden kann und wie sich Potenziale bei der Monetarisierung ausschöpfen lassen. Der Fokus liegt dabei auf produzierenden Unternehmen.
Bisherige Methoden der Luftqualitätsüberwachung in Städten beruhen auf stationären Messstationen, sodass die Luftqualität nur punktuell überwacht werden kann. Im Forschungsprojekt ‚AirQuality‘ wurde ein mobiles IoT-Netz entwickelt, das Luftqualitätsdaten in bisher nicht vorhandener Granularität erhebt. Das echtzeitfähige System erhöht die Transparenz der Luftqualität in Städten und bietet damit einen Lösungsansatz für eine Vielzahl von Anwendungsfällen. Darüber hinaus wird durch die Ergebnisse des Forschungsprojekts das Potenzial von Niedrigpreissensoren bei der Entwicklung von skalierbaren Messsystemen verdeutlicht.
Projekt FuturePRO: Erst der Check, dann das System / FuturePRO: First the Check, then the System
(2021)
Der Maschinen und Anlagenbau steht einer sich immer schneller verändernden Geschäftsumgebung gegenüber. Um auch in Zukunft wettbewerbsfähig zu sein, bedarf es eines professionellen Projektmanagements, um auf diese Veränderung reagieren zu können.
Doch gerade bei KMU erfolgt dies meist noch händisch mit Excel und Outlook. Im Rahmen des Forschungsprojekts ‚FuturePro‘ haben der FIR e. V. an der RWTH Aachen und das ICM – Institut Chemnitzer Maschinen- und Anlagenbau e. V. für KMU im Maschinen und Anlagenbau einen Selbstcheck entwickelt, anhand dessen ein individueller Leitfaden zur Implementierung eines Projektmanagementsystems generiert wird.
Im Forschungsprojekt „FuturePRO“ wurde eine fragenbasierte Auswahl- und Implementierungslogik für Projektmanagementsystemen bei kleinen und mittelständischen Unternehmen (KMU) des Maschinen- und Anlagenbau entwickelt. Das Vorgehen ermöglicht dabei ressourcenschonend
die Steuerung von Kundenaufträgen und vor allem Innovationsprojekten durch ein optimiertes Projektmanagement neu aufzustellen.