Jokim Janßen
Refine
Document Type
- Book (1)
- Part of a Book (3)
- Conference Proceeding (5)
- Contribution to a Periodical (12)
- Lecture (1)
- Internet Paper (1)
- Report (2)
- Working Paper (6)
Language
- German (22)
- English (6)
- Multiple languages (3)
Is part of the Bibliography
- no (31)
Keywords
- 01 (2)
- 02 (5)
- 03 (2)
- Anomaly detection (1)
- Auftragsabwicklung (1)
- Blockchain (1)
- Business ecosystem (1)
- CPSL (1)
- Circular economy (1)
- Crisis management (1)
Institute
Circular economy (CE) is considered to be the business model of the future, since it enables decoupling of economic growth and resource consumption. Digitalization is an enabler for companies to accomplish the transition to circular business models, as it enables automated data sharing and usage, but it also poses an enormous challenge. The data required for the implementation of circular business models is generated during the entire life cycle of a product. Digital product passports (DPP) represent a solution for the exchange of product-related data across the entire life cycle and various stakeholders. So far, they have hardly been integrated into production planning and control (PPC) systems. This paper describes requirements, specific use cases and related data flows for an integration of DPP and PPC systems. Finally, a model is presented that enables event-driven creation and use of data for the bidirectional integration of DPP into PPC systems.
GAIA-X-Reifegradmodell
(2024)
Um die wachsenden Kundenanforderungen und die damit verbundene Komplexitätssteigerung der aktuellen Herausforderungen zu bewältigen, öffnen Unternehmen ihre Wertschöpfungsketten, reduzieren ihre Fertigungstiefe und gehen zunehmend Kooperationen ein. Der unternehmensübergreifende Datenaustausch entlang der Supply-Chain wird damit zu einer Schlüsselkomponente für die Wettbewerbsfähigkeit und die Realisierung kundenspezifischer Lösungen. Aus diesem Grund hat die Europäische Union das Projekt GAIA-X ins Leben gerufen, dessen Ziel es ist, die nächste Generation der Dateninfrastruktur für Europa und seine Unternehmen zu schaffen. Das GAIA-X-Reifegradmodell bietet einen Ansatz zur Einordnung von Unternehmen in verschiedene Entwicklungsstufen und liefert konkrete Anforderungen für die Weiterentwicklung entlang eines vorgegebenen Entwicklungspfades hin zu einem vollwertigen Teilnehmer an der föderierten GAIA-X-Dateninfrastruktur.
Nachhaltiges Wirtschaften und verantwortungsvoller Umgang mit Ressourcen und Umwelt haben in der deutschen Gesellschaft einen hohen Stellenwert erlangt. Durch eine bessere Produktrückverfolgung und höhere Transparenz in Supply-Chains wird ressourcenschonendere Wertschöpfung ermöglicht. Zusätzlich fordern Kunden eine Einsicht in die Lieferkette und wollen über Produktion und Herkunft der Produkte informiert werden. Die Blockchain als verteilte Datenbank mit außerordentlicher Datensicherheit, Verfügbarkeit von Informationen in Echtzeit im gesamten Netzwerk und hoher Verlässlichkeit bietet dabei die technologische Grundlage, die Transparenz in den Lieferketten zu erhöhen. So können Daten zu Emissionen, Arbeitsbedingungen, Materialherkunft und weiteren Nachhaltigkeitskriterien entlang der Lieferkette aufgenommen und verteilt werden.
Die Anforderungen von Anwendern und Lösungsanbietern an eine Blockchain-Applikation flossen in eine Referenzarchitektur für diese ein. Dabei wurden z. B. die Gestaltung von Schnittstellen, benötigte Daten und Zugangsrichtlinien definiert. Gemeinsam mit dem DIN wurden die Ergebnisse in eine Standardisierung überführt. Anschließend wurden Gestaltungsempfehlungen zur Integration einer Blockchain-Applikation abgeleitet und die Ergebnisse in Unternehmen validiert.
Die Referenzarchitektur dient der erleichterten Entwicklung und Implementierung von Blockchain-Applikationen und damit einer Reduzierung von Kosten, Risiken und Zeitaufwand für KMU. Dem Kunden wird ein besserer Zugang zu Informationen über die Herkunft seiner Produkte ermöglicht, um ökologisch sinnvolle und nachhaltige Kaufentscheidungen treffen zu können.
Based on the increasingly complex value creation networks, more and more event-based systems are being used for decision support. One example of a category of event-based systems is supply chain event management. The aim is to enable the best possible reaction to critical exceptional events based on event data. The central element is the event, which represents the information basis for mapping and matching the process flows in the event-based systems. However, since the data quality is insufficient in numerous application cases and the identification of incorrect data in supply chain event management is considered in the literature, this paper deals with the theoretical derivation of the necessary data attributes for the identification of incorrect event data. In particular, the types of errors that require complex identification strategies are considered. Accordingly, the relevant existing error types of event data are specified in subtypes in this paper. Subsequently, the necessary information requirements and information available regarding identification are considered using a GAP analysis. Based on this gap, the necessary data attributes can then be derived. Finally, an approach is presented that enables the generation of the complete data set. This serves as a basis for the recognition and filtering out of erroneous events in contrast to standard and exception events.
Vor dem Hintergrund zunehmend komplexer und vernetzter Wertschöpfungsnetzwerke und in Zeiten sich ständig verändernder Rahmenbedingungen steigt für Unternehmen die Bedeutung einer resilienten Gestaltung ihrer Wertschöpfungsnetzwerke. Durch die hohe Vernetzung in einem Wertschöpfungsnetzwerk entsteht eine starke Abhängigkeit zwischen den einzelnen Akteuren. Störungen haben somit häufig nicht nur Auswirkungen auf einzelne Unternehmen, sondern betreffen verschiedene Akteure der Wertschöpfungsnetzwerke. Tritt nun eine Störung auf, kann sich diese im gesamten Netzwerk ausbreiten. Erst der konkrete Eintritt solcher Störungen im großen Umfang – wie zuletzt im Zuge der Corona-Pandemie oder der Blockierung des Suez-Kanals – führt Unternehmen regelmäßig dazu, sich mit ihren Wertschöpfungsnetzwerken auseinander zu setzen. Eine Möglichkeit zur Sicherung der Leistungsfähigkeit in einem volatilen Umfeld stellt der Aufbau von Resilienz dar. Insgesamt ist es hierbei das Ziel, Wertschöpfungsnetzwerke so zu gestalten, dass sie im Falle einer Störung möglichst wenig beeinträchtigt sind und schnell in den ursprünglichen oder einen besseren Zustand zurückkehren können.
Crises are becoming more and more frequent. Whether natural disasters, economic crises, political events, or a pandemic - the right action mitigates the impact. The PAIRS project plans to minimize the surprise effect of these and to recommend appropriate actions based on data using artificial intelligence (AI). This paper conceptualizes a cascading model based on scenario technique, which acts as the basic approach in the project. The long-term discipline of scenario technique is integrated into the discipline of crisis management to enable short-term and continuous crises management in an automated manner. For this purpose, a practical crisis definition is given and interpreted as a process. Then, a cascading model is derived in which crises are continuously thought through using the scenario technique and three types of observations are classified: Incidents, disturbances, and crises. The presented model is exemplified within a non-technical application of a use case in the context of humanitarian logistics and the COVID-19 pandemic. Furthermore, first technical insights from the field of AI are given in the form of a semantic description composing a knowledge graph. In summary, a conceptual model is presented to enable situation-based crisis management with automated scenario generation by combining the two disciplines of crisis management with scenario technique.
Systematisation Approach
(2023)
Current megatrends such as globalisation and digitalisation are increasing complexity, making systems for well-founded and short-term decision support indispensable. A necessary condition for reliable decision-making is high data quality. In practice, it is repeatedly shown that data quality is insufficient, especially in master and transaction data. Moreover, upcoming approaches for data-based decisions consistently raise the required level of data quality. Hence, the importance of handling insufficient data quality is currently and will remain elementary. Since the literature does not systematically consider the possibilities in the case of insufficient data quality, this paper presents a general model and systematic approach for handling those cases in real-world scenarios. The model developed here presents the various possibilities of handling insufficient data quality in a process-based approach as a framework for decision support. The individual aspects of the model are examined in more detail along the process chain from data acquisition to final data processing. Subsequently, the systematic approach is applied and contextualised for production planning and supply chain event management, respectively. Due to their general validity, the results enable companies to manage insufficient data quality systematically.
Heutige Unternehmen sehen sich fortwährend verschärften Marktanforderungen ausgesetzt. Als Schlüssel zur Sicherung der Wettbewerbsfähigkeit erweist sich neben der Entwicklung neuer Produkte oder dem Einsatz innovativer Fertigungstechnologien insbesondere die Kooperation mit Kunden und Lieferanten, also die Bildung von Unternehmensnetzwerken entlang der Wertschöpfungskette. Unter dem Begriff Supply Chain Management (SCM) werden Software-Lösungen gehandelt, die Unternehmen bei der Gestaltung, Planung und Steuerung dieser Netzwerke unterstützen. Für potenzielle Anwender stellt sich der Markt für SCM-Software allerdings als sehr unübersichtlich dar. Die angebotenen Lösungen unterscheiden sich sowohl in ihren Funktionsumfängen wie auch in ihren Lösungsansätzen. Ziel: Dieser Marktspiegel verfolgt das Ziel, einen schnellen Überblick über den Markt für SCM-Software zu geben. Unternehmensfachleute und Entscheider erhalten so grundlegende Informationen über das aktuelle Angebot an SCM-Software. Der einführende Teil ordnet nach einer Begriffsbestimmung das Supply Chain Management in den Aufgabenkomplex der betrieblichen Planung und Steuerung ein. Es folgt eine grundlegende Bewertung der untersuchten SCM-Software im Hinblick auf die Unterstützung der relevanten Aufgaben. Anschließend folgen konkrete Hilfestellungen für die Durchführung eines Projektes zur Auswahl eines SCM-Systems, indem eine Methodik zur sicheren und effizienten Auswahl und Einführung von SCM-Lösungen vorgestellt wird. Abschließend gibt der Marktspiegel einen Überblick über die relevanten Anbieter und deren Software-Angebot. Im Rahmen einer SoftwareAuswahl bietet der Marktspiegel demnach eine erste Orientierung im Markt für SCM-Software. Im Verbund mit der Internetplattform IT-Matchmaker®
unterstützt der Marktspiegel darüber hinaus Unternehmen bei der konkreten Durchführung eines Auswahl-Projekts im SCM-Bereich. Konzept:
Grundlage des Marktspiegels ist ein Aufgabenmodell, aus dem ein standardisierter Fragenkatalog entwickelt wurde. Hiermit lassen sich die verschiedenen im Marktspiegel abgebildeten Softwarelösungen übersichtlich und detailliert darstellen und vergleichen. Gleichzeitig dient der Fragenkatalog als Vorlage für die Erstellung von Lastenheften im Rahmen konkreter Auswahlprojekte. Der Fragenkatalog sowie die jeweils aktuellen Marktdaten sind über den IT-Matchmaker® (www.itmatchmaker.com) der Trovarit AG verfügbar und unterstützen die Vorauswahl einer geeigneten SCM-Software.
Crises pose significant short and long-term threats to companies. The research project PAIRS aims to strengthen the resilience of actors in the supply-chain, en-ergy, and healthcare sectors in crisis situations. The basis for this is the newly created potential in data exchange, which is leveraged by combining internal with external (company-)data, e.g. in the GAIA-X network. AI is then the key to iden-tifying the time of the crisis and deriving appropriate actions to deal with it. Therefore, crisis scenarios are generated, and risks are assessed. In this paper, the project fundamentals are discussed. This includes the development of a project definition of the term "crisis", which is based on literature research of various scientific disciplines (e.g. economics or political science), as well as interviews with professional and academic experts from different fields. Moreover, a specif-ic example from the supply-chain domain is introduced to illustrate the process of requirement identification.