Jonas Müller
Refine
Document Type
- Part of a Book (1)
- Conference Proceeding (4)
- Contribution to a Periodical (14)
- Doctoral Thesis (1)
Language
- German (10)
- English (5)
- Multiple languages (5)
Is part of the Bibliography
- no (20)
Keywords
- 01 (3)
- 02 (2)
- 03 (1)
- 04 (1)
- Business analytics (3)
- Business-Analytics (3)
- Capacity Utilization (1)
- Capacity utilization (1)
- Data collection (1)
- Data-Centric Platform (1)
Institute
In zunehmend disruptiven Märkten wird die Fähigkeit, Latenzen in Bezug auf die organisatorische Adaptions- und Entscheidungsfähigkeit zur Reaktion auf neue Marktbedingungen zu minimieren, für das langfristige Bestehen von Unternehmen immer bedeutsamer. In Reaktion auf diese Entwicklungen realisieren immer mehr Unternehmen Strategien, um durch die informationstechnologiebasierte Generierung, Speicherung und Verarbeitung von Daten die datengetriebene Entscheidungsfindung voranzutreiben und datenbasierte Entscheidungen zu treffen. In der Konsequenz generieren und speichern die Unternehmen zunehmend große Mengen an Daten. Um diese in umsetzbare Erkenntnisse zu überführen und eine datenbasierte Entscheidungsfindung zu realisieren, sind fortgeschrittene statistische Verfahren und Funktionen (Analytics) notwendig, die unter dem Begriff Business-Analytics zusammengefasst werden. Trotz der hohen zu erwartenden Potentiale stehen viele Unternehmen großen Herausforderungen gegenüber, welche durch den Einsatz der hochkomplexen Systeme und Technologien induziert werden und große Auswirkungen auf die Organisation und ihre Mitarbeiter haben. In Abwesenheit geeigneter Hilfestellungen und Instrumente zur Berücksichtigung und Gestaltung der relevanten technischen und sozialen Faktoren, welche den erfolgreichen Einsatz von Business-Analytics beeinflussen, bleiben die Unternehmen auf sich allein gestellt. Die Arbeit hat zum Ziel, den erfolgreichen Einsatz verschiedener Typen von Business-Analytics durch soziotechnische Gestaltungsinstrumente sicherzustellen. Das Ergebnis besteht somit in der systematischen Entwicklung konkreter Gestaltungsinstrumente, um unter Berücksichtigung des wechselseitigen Einflusses zwischen Technologieeinsatz sowie der Organisation und deren Mitarbeiter den erfolgreichen Einsatz verschiedener Typen von Business-Analytics zu gewährleisten.
Das Forschungsvorhaben PROmining adressiert die Digitalisierung der deutschen S&E‑Industrie. Das Forschungsziel ist der Aufbau eines Demonstrators einer digitalen Plattform, mit der Unternehmen der S&E-Industrie befähigt werden mittels einer gesteigerten Prognosefähigkeit besser auf schwankende Nachfragen zu reagieren. Die gezielte Entwicklung und Implementierung der Digitalisierung in Form einer Plattformökonomie kann der S&E-Industrie mittelbaren und unmittelbaren Nutzen bieten.
Digitalization offers companies strategic advantages through the
simplification and optimization of business processes and is an
important lever for long-term growth. Numerous industries already
benefit from optimized coordination of capacities and resources by
integrating digital technologies into business processes. Digital platforms enable, e. g., the demand-based adjustment of asset capacities at peak loads on the basis of data-based forecasts. In particular, small and medium-sized enterprises in the German quarrying industry have so far been denied access to such technologies due to high investment and operating costs, high implementation efforts and heterogeneous machine fleets. This paper presents the functions of the data-centric platform demonstrator “PROmining” developed in
an AiF research project and validates them using case studies with
companies in the industry. The platform demonstrator offers marginally digitalised companies a tool with functions ranging from simple
operational data collection, the evaluation of capacity utilization,
to scenario development for regional demand, which can be used
as a blueprint within their own company. Thus, companies in the
quarrying sector are provided with a low-effort entry into the digital
transformation and a contribution to long-term competitiveness.
Die Branche der Steine und Erden (S&E) ist durch eine große Vielfalt unterschiedlicher Digitalisierungsgrade geprägt, wodurch ein Großteil der Unternehmen nur bedingt eine datenbasierte, betriebsinterne Optimierung von Prozessschritten und der Auslastung umsetzen kann. Um diese Unternehmen in ihren unterschiedlichen Reifegraden zu unterstützen, können digitale Plattformen eingesetzt werden.
Die rasante Entwicklung digitaler Technologien und die Umstellung auf nachhaltige Praktiken sind zwei Auslöser dafür, dass immer mehr Unternehmen in Deutschland grundlegende Transformationen anstoßen. Die aktuellen Veränderungen erfordern von strategischen Entscheidungsträgern mehr denn je ein hohes Maß an Anpassungsfähigkeit. Während einige Unternehmen Vorreiter werden und davon profitieren, verlieren zögernde an Wettbewerbsfähigkeit. Doch wie können Unternehmen überhaupt messen, ob sie mit ihrer Transformation erfolgreich sind? Hierzu wurde am Forschungsinstitut für Rationalisierung (FIR) e. V. an der RWTH Aachen ein Modell entwickelt, das Unternehmen bei der Bewertung ihrer Transformationsprojekte unterstützt.
The use of Business Analytics (BA) helps to improve the quality of decisions and reduces reaction latencies, especially in uncertain and volatile market situations. This expectation leads a continuously rising number of companies to make large investments in BA. The successful use of Business Analytics is increasingly becoming a differentiator. At the same time, the use of BA is not trivial, rather, it is subject to high socio-technical requirements. If these are not addressed, high risks arise that stand in the way of successful use. In particular, it is important to consider the risks in relation to the different types of BA in a differentiated way. So far, there is a lack of suitable approaches in the literature to consider these type-specific risks with regard to the socio-technical dimensions: people, technology, and organization. This paper addresses this gap by initially identifying risks in the use of Business Analytics. For this purpose, possible risks are identified using a systematic literature review and verified with a Delphi survey with various partners experienced in dealing with BA. Subsequently, the identified and validated risks are assigned to three different types of Business Analytics (Descriptive, Predictive and Prescriptive Analytics) and assessed in order to systematically address and reduce the risks. The result of this paper is an overview of the interactions between the socio-technically assigned risks, summarized in a risk catalog, and the different types of Business Analytics.
The quarrying industry, which largely consists of less digitized SMEs, is an integral part of the German economy. More than 95% of the primary raw materials produced are used by the domestic construction industry. Quarrying companies operate demand-oriented with short planning horizons at several locations simultaneously. Due to the low level of digitization and the reluctance to share data, untapped efficiency potential in data-based demand forecasting and capacity planning arises. The situation is aggravated by the fact that SMEs have a heterogeneous mobile machinery so as not to become dependent on individual suppliers, and that transport distances of over 50 kilometers are uneconomical due to high transport costs and low material values. Within the research project PROmining a data-centric platform which improves demand forecast accuracy and multi-site capacity utilization is developed. One of the core functionalities of this platform is an industry-specific demand forecasting model. Against this background, this paper presents a methodology for establishing this forecasting model. To this end, expected demands of secondary industry sectors will be analyzed to improve mid-term volume-forecasting accuracy for the local quarrying industry. The data-centric platform will connect demand forecasting data with relevant key performance indicators of multi-site asset utilization. Following this methodology, operational planning horizons can be extended while significantly improving overall production efficiency. Thus, quarrying businesses are enabled to respond to fluctuating demand volumes effectively and can increase their personnel and machine utilization across multiple quarry sites.
The successful use of Business Analytics is increasingly becoming a differentiating competitive factor. The ability to extract data-driven insights and integrate them into decision-making is becoming growingly important. The underlying technologies are evolving exponentially, the value proposition differs from simple descriptive applications to automated decision-making. Existing approaches found in literature and practice to classify those levels only insufficiently mark down the boundaries between the different technology levels. As a consequence, it is often unclear which characteristics of the technology interact with the working environment, which can be described as a socio-technical system. Using a systematic literature review, this paper identifies the characteristics of Business Analytics and delineates three types of Business Analytics based on case studies. Thus, a starting point for the socio-technical system design and optimization for the use of Business Analytics is created.
Digitalization offers companies strategic advantages through the simplification and optimization of business procedures and is an important lever for long-term growth. Numerous industries already benefit from optimized coordination of capacities and resources by integrating digital technologies into business processess. Digital platforms enable, e. g. the demand-based adjustment of asset capacities at peak loads on the basis of data-based forecasts. In particular, small and medium sized enterprises in the German quarrying indsutry have so far been denied access to such technologies due to high investment and operating costs, high implementation efforts and heterogeneous machine fleets. This paper presentes the functions of the data-centric platform demonstrator " PROmining" developed in an AiF research project and validates them using case studies in the industry. The platform demonstrator offers marginally digitalised companies a tool with functions ranging from simple operational data collection, the evaluation of capacity utilization, to scenario development for regional demand, which can be used as a blueprint within their own company. Thus, companies in the quarrying sector are provided with a low-effort entry into the digital transformation and a contributio to long-term competitiveness.