John von Stamm
Refine
Document Type
Language
- German (1)
- English (4)
- Multiple languages (1)
Is part of the Bibliography
- no (6)
Keywords
- 01 (1)
- 02 (2)
- Administration (1)
- Automatisierung (1)
- Capacity Utilization (1)
- Data-Centric Platform (1)
- Demand Forecasting (1)
- Digitization of SMEs (1)
- Disruptive events (1)
- Efficiency Improvement (1)
Institute
Future-Proofing Freight
(2024)
The European transport landscape, which is increasingly burdened by the risk of natural disasters, pandemics and geopolitical conflicts, requires a rethink in designing and managing of its multimodal transport networks. The Resilient Multimodal Transport Network (ReMuNet) research project is a response to this problem and a beacon of hope for innovation and strategic thinking. This extended abstract provides an overview of the ReMuNet project, in which, after an introduction, the methodology and results are presented.
The ReMuNet project aims to enhance the resilience and sustainability of European freight transport networks in response to disruptive events. By utilizing synchromodal relay transportation, it integrates multimodal logistics approaches to improve network efficiency and adaptability. Core functionalities include the detection and assessment of disruptive events, real-time route planning, and the use of AI to optimize multimodal transport routes. ReMuNet's collaborative platform fosters stakeholder coordination, ensuring capacity allocation and sustainable transport options. Pilot regions focus on geopolitical and ecological challenges, emphasizing lessons from past disruptions like the COVID-19 pandemic. This initiative aligns with the European Physical Internet vision, contributing to reduced emissions and robust freight logistics.
Robotic Process Automation (RPA) gewinnt durch die Möglichkeit, repetitive Administrationsprozesse zu automatisieren und Effizienzpotenziale zu heben, zunehmend an Bedeutung. In der Praxis scheitern jedoch viele Implementierungsprojekte. Dies resultiert primär aus dem fehlenden Verständnis darüber, wie sich die Einführung von RPA auf das Gesamtsystem Organisation auswirkt. Es entsteht eine wachsende Kluft zwischen dem Leistungsversprechen von RPA und der Fähigkeit von Unternehmen, jenes auszuschöpfen. Trotz der exponentiellen Geschwindigkeit des technologischen Fortschritts mangelt es vielen Unternehmen an der notwendigen Adaptionsfähigkeit, welche für den nachhaltigen Erfolg einer RPA-Implementierung essenziell ist. In diesem Kontext spielt die Optimierung der im Einklang stehenden Dimensionen Mensch, Technik und Organisation eine zentrale Rolle. Durch eine systematische Literaturrecherche wird aufgezeigt, dass bisherige Ansätze diesen Zusammenhang nur unzureichend betrachten. In der heutigen Forschungslandschaft existiert kein Modell, welches die technischen, sozialen und organisatorischen Komponenten, die im Zuge der RPA-Einführung zu berücksichtigen sind, darlegt. Angelehnt an das soziotechnische Systemdenken und den Prozess der Fallstudienforschung werden theoriegeleitet Dimensionen und Elemente einer RPA-spezifischen soziotechnischen Systemarchitektur identifiziert und erläutert. Das daraus resultierende Modell zur Unterstützung von Unternehmen bei der RPA-Einführung wurde mit einer Vielzahl Industrievertretern im Rahmen des öffentlichen Forschungsprojekts RPAsset des FIR e. V. an der RWTH Aachen validiert.
The quarrying industry, which largely consists of less digitized SMEs, is an integral part of the German economy. More than 95% of the primary raw materials produced are used by the domestic construction industry. Quarrying companies operate demand-oriented with short planning horizons at several locations simultaneously. Due to the low level of digitization and the reluctance to share data, untapped efficiency potential in data-based demand forecasting and capacity planning arises. The situation is aggravated by the fact that SMEs have a heterogeneous mobile machinery so as not to become dependent on individual suppliers, and that transport distances of over 50 kilometers are uneconomical due to high transport costs and low material values. Within the research project PROmining a data-centric platform which improves demand forecast accuracy and multi-site capacity utilization is developed. One of the core functionalities of this platform is an industry-specific demand forecasting model. Against this background, this paper presents a methodology for establishing this forecasting model. To this end, expected demands of secondary industry sectors will be analyzed to improve mid-term volume-forecasting accuracy for the local quarrying industry. The data-centric platform will connect demand forecasting data with relevant key performance indicators of multi-site asset utilization. Following this methodology, operational planning horizons can be extended while significantly improving overall production efficiency. Thus, quarrying businesses are enabled to respond to fluctuating demand volumes effectively and can increase their personnel and machine utilization across multiple quarry sites.
Understanding the Organizational Impact of Robotic Process Automation: A Socio-Technical Perspective
(2022)
Interest in AI-driven automation software is growing constantly across
all industries, as these technologies enable companies to almost automate administrative processes completely and significantly increase operational efficiency.
However, many implementation attempts fail due to a lack of understanding of how these technologies affect the various socio-technical aspects that are intertwined in an organisation. This leads to a widening gap between value propositions of automation software and the ability of companies to exploit them. For long-term
success, collaboration between humans and software robots in the organization must be optimised. Therefore, the social, technical, and organizational impact of Robotic Process Automation was investigated. Following a socio-technical systems approach, a model was developed and validated in a use case of a company in the mechanical engineering sector. Knowing the influencing factors before launching large-scale automation initiatives will help practitioners to better exploit
efficiency potentials and increase the long-term success.
Im neu gestarteten Forschungsprojekt ‚STAFFEL‘ soll eine Internetplattform entstehen, die mithilfe von KI-Algorithmen Langstrecken des Straßengüterverkehrs in Teilstrecken
zerlegt. Speditionen können dann die Teilstrecken ihrer Touren über einen Lenkzeiten-Marktplatz an geeignete Frachtführer vermitteln. Am Ende einer Teilstrecke sollen die Trailer durch digitalisierte IoT-Schlösser schlüssellos an den nächsten, ausgeruhten Fahrer übergeben werden. Durch die IoT-Schlösser soll ein sicherer und robuster Übergabeprozess etabliert werden, sodass die Übergabe des Trailers auch speditionsübergreifend gewährleistet werden kann. Zudem sollen weiterführende Services für Fahrer wie Hotelreservierung oder Mautbuchung inkludiert und so der Planungsprozess für die
Fahrer vereinfacht werden.