Tim Walter
Refine
Document Type
- Book (3)
- Conference Proceeding (3)
- Working Paper (2)
- Internet Paper (1)
Is part of the Bibliography
- no (9)
Keywords
- KI (3)
- Künstliche Intelligenz (3)
- ADAM (2)
- Digitalisierung (2)
- Industrie 4.0 (2)
- Studie (2)
- 5G (1)
- Agriculture (1)
- BMWi (1)
- Cloud-Transformation (1)
Institute
Feeding the growing world population is a scientific and economic challenge. The target variables to be optimised are the yield that can be produced on a given area and the reduction of the resources used for this purpose. High-wage countries are faced with the problem that the use of personnel is a significant cost driver. Developing countries, on the other hand, usually operate on much smaller field sizes, so that the work in the field is still strongly characterised by manual labour. One solution to meet these challenges is the use of smaller autonomous harvesting robots. These can be networked into a swarm of machines to work even larger fields. The networking of autonomous agricultural machines is a key use case for rural 5G networks. 5G technology can offer many advantages over older mobile communications standards and therefore make use cases more efficient or enable new ones. Various use cases are also conceivable in the field of agriculture, yet it is unclear how 5G networks can and must be specified for this purpose. In this paper, using the example of 5G-connected harvesters powered by swarm robotics, we present the challenges that have arisen and the specification that has been developed.
Künstliche Intelligenz (KI) hat als Technologie in den vergangenen Jahren Marktreife erlangt (s. Stich et al. 2021, S. 27ff.). Es existiert eine Vielzahl benutzerfreundlicher Produkte und Services, welche die Anwendung von KI im Alltag und im Unternehmen vereinfachen. Die Herausforderung, vor denen Anwendende, gerade im betriebswirtschaftlichen Kontext, stehen, ist nicht die technische Machbarkeit einer KI-Applikation, sondern deren organisatorisch und rechtlich zulässige Gestaltung. Zu einer zunehmenden Dynamik in der Gesetzgebung kommt ein gesellschaftliches Interesse an der Kontrolle und Transparenz über die für KI-Modelle erhobenen Daten. Die Diskussion über Datensouveränität im geschäftlichen und privaten Alltag rückt mehr und mehr in das Zentrum der öffentlichen Aufmerksamkeit.
Datenbasierte KI-Anwendungen stehen damit in einem Spannungsfeld zwischen den Potenzialen, die das Erheben und Teilen von Daten über Unternehmensgrenzen hinweg bietet, und der Herausforderung, die Datensouveränität der involvierten Personen zu wahren. Die vorliegende Studie soll erstens über die Auswirkungen der Datensouveränität und die damit verbundenen aktuellen und kommenden Regularien auf KI-Anwendungsfälle aufklären. Dafür wurden Expertinnen und Experten aus den Bereichen Recht, KI- und Organisationsforschung befragt. Zweitens zeigt die Studie Potenziale und Best Practices von KI-Anwendungsfällen mit überbetrieblichem Datenaustausch auf. Dafür wurden Fallstudien in Unternehmen durchgeführt, die bereits erfolgreich Datenaustausch in ihre Geschäftsmodelle integriert haben, um ihre KI-Applikationen zu betreiben und zu verbessern. Aus den Interviews und Fallstudien wurden drei zentrale Erfolgsprinzipien abgeleitet, die im Folgenden zusammengefasst dargestellt werden:
• Auf bestehenden Standards und Initiativen aufsetzen: Technologische Lösungen für Künstliche Intelligenz und unternehmensübergreifenden Datenaustausch existieren bereits. Vor allem KI-Anwendungsfälle ähneln einander häufig und können recherchiert und adaptiert werden. Wenn die eigene Recherche an Grenzen stößt, können Expertinnen und Experten herangezogen werden. Dies stellt zwar eine Investition dar; die Erfahrung zeigt jedoch, dass eine frühe Beteiligung von Wissensträgerinnen und -trägern wirtschaftlich sinnvoller ist als reaktive Anpassungen im Projektverlauf.
• KI-basierte Produkte und Dienstleistungen auf Prinzipien der Wirtschaftlichkeit und Datensouveränität aufbauen: Zwischen dem Handel mit Daten und den damit verbundenen Potenzialen, Herausforderungen und Sorgfaltspflichten sowie dem Geschäft mit physischen Produkten existieren viele Parallelen. Wenn Prinzipien wie Reziprozität (die Schaffung beiderseitigen Nutzens) und die Sicherheit der beteiligten Akteurinnen und Akteure berücksichtigt werden, ist bereits ein Großteil der konzeptuellen Herausforderungen adressiert.
• Souveräne Datenräume mitgestalten und nutzen: Der Datenaustausch unter Berücksichtigung der Souveränität von Beteiligten zieht eine Vielzahl technischer und organisatorischer Anforderungen nach sich, die zur Realisierung nötig sind. Es existieren Initiativen, Datenräume aufzubauen, welche als Plattform mit festen Regelwerken und vorgefertigten technischen Lösungsbausteinen dienen. Dadurch wird der Umsetzungsaufwand für Interessierte reduziert und Netzwerkeffekte realisiert. Das frühe Stadium dieser Initiativen gibt Unternehmen die Möglichkeit, diese entstehenden Ökosysteme mitzugestalten.
Networked digitalisation as an enabler for smart products and data-based business models presents companies with numerous and diverse challenges on their way through the digital transformation. Various reference architecture models have been developed in recent years to support these companies. A detailed analysis of these and in particular their use by companies quickly showed that currently existing reference models have major weaknesses in their practical suitability. With the Aachen Digital Architecture Management (ADAM), a framework was developed that specifically addresses the weaknesses of existing reference architectures and specifically takes up their strengths. As a holistic model, specially developed for use by companies, ADAM structures the digital transformation of companies in the areas of digital infrastructure and business development starting from customer requirements. Systematically, companies are enabled to drive the design of the digital architecture, taking into account design fields. The description of the design fields offers a detailed insight into the essential tasks on the way to a digitally networked company. The model is not only a structuring aid, but also contains a construction kit with the design fields to configure the procedure in the digital transformation. The procedure differentiates between the development of the digitalisation strategy and the implementation of the digital architecture. Three different case studies also show how ADAM is used in industry, what structuring support it can provide and how the digital transformation can be configured. The breadth and depth of ADAM enable companies to take the path of digital transformation systematically and in a structured manner, without ignoring the value-creating components of digitalisation. This qualifies ADAM as a sustainability-oriented framework, as it places the economic scaling, needs-based adaptation and future-oriented robustness of solution modules in the focus of digital transformation.
Prinzipien zur erfolgreichen Umsetzung von KI-Geschäftsmodellinnovationen
In Zeiten des zunehmenden globalen Wettbewerbs und hoch vernetzter Wertschöpfungsketten entwickelt sich Künstliche Intelligenz zu einem immer wichtiger werdenden Wettbewerbsfaktor für Unternehmen am Wirtschaftsstandort Deutschland. Durch den Einsatz von KI-Verfahren können nicht nur interne Geschäftsprozesse kostensenkend optimiert, sondern auch neue, digitale Geschäftsfelder und -modelle erschlossen werden. Es lassen sich zum einen Trends identifizieren, denen der Einsatz von KI in deutschen Unternehmen folgt. Zum anderen zeigt sich, dass sich KI unterschiedlich stark auf verschiedene Dimensionen innovativer Geschäftsmodelle auswirkt. Insgesamt lassen sich so Prinzipien ableiten, die die erfolgreiche Umsetzung von KI-Geschäftsmodellinnovationen beschreiben.
Neue Technologie- und Anwendungstrends kennzeichnen KI-Nutzung
Die tatsächliche KI-Landschaft in den Wertschöpfungsketten von KI-nutzenden Unternehmen ist durch Trends gekennzeichnet. Diese lassen sich in Technologie- und Anwendungstrends unterteilen. Experteninterviews zeigen beispielsweise, dass KI-Anwendungen bevorzugt auf Cloud-Infrastrukturen entwickelt und bereitgestellt werden. Das wiederum rückt die Frage nach der Wahrung der Datensouveränität in den Vordergrund. Anwendung findet KI tendenziell zur Prognose und Überwachung.
Sechs Prinzipien beeinflussen die erfolgreiche Umsetzung von KI-Geschäftsmodellinnovationen
Fallstudien über ein breites Spektrum der deutschen Wirtschaft beleuchten, welche Aspekte eines KI-basierten Geschäftsmodells den größten Effekt auf das Unternehmen haben. Hier lässt sich ein besonders hoher Einfluss von KI auf das Nutzenversprechen neuartiger, digitaler Leistungen der Unternehmen an die Kundinnen und Kunden feststellen. So lassen sich sechs Erfolgsprinzipien zur erfolgreichen Implementierung von KI-Technologien identifizieren, um die wirtschaftliche Nutzung von KI für Unternehmen in Deutschland im globalen Wettbewerb weiter zu steigern. So empfiehlt es sich zum Beispiel – neben der Auswahl des richtigen KI-Anwendungsfalles – ebenfalls darauf zu achten, dass die KI-Anwendung sowohl den Anbietenden wie auch den Anwendenden nützt. Diese und weitere Erfolgsprinzipien werden detailliert in der Studie Künstliche Intelligenz – Geschäftsmodellinnovationen und Entwicklungstrends beschrieben.
Künstliche Intelligenz (KI) hat sich über die letzten Jahre stetig zu einem Thema mit strategischer Priorität für Unternehmen entwickelt. Das zeigt sich nicht zuletzt in der gesteigerten Investitionsbereitschaft deutscher Unternehmen in KI-Projekte. Wirtschaftliche Akteure haben erkannt, dass durch eine sinnvolle Nutzung von KI-Technologien Wettbewerbsvorteile erzielt werden können. Die vorliegende Studie legt das Augenmerk auf den industriellen Einsatz einer KI-Technologie, die bereits heute von vielen Unternehmen erfolgreich genutzt wird: Die natürliche Sprachverarbeitung (engl. Natural Language Processing, kurz NLP). Die wirtschaftlichen Potenziale der Technologie liegen dabei in ihrer Fähigkeit, betriebliche Abläufe zu automatisieren und die Schnittstelle zwischen Mensch und Maschine zu verbessern und zu vereinfachen. Ziel der Studie ist es, die Potenziale der NLP-Technologie für Unternehmen nutzbar zu machen, indem konkrete Anwendungsfälle und allgemeine Handlungsempfehlungen sowie Nutzen und Risiken aufgezeigt werden.
The COVID-19 pandemic has shown companies that their on-premise infrastructures often reach their limits with a large number of remote accesses. The transition to cloud-based solutions could represent a more efficient alternative. However, many German companies, especially small and medium-sized enterprises (SME), are still hesitant to take this big step of transferring applications to the cloud. For this reason, this paper examines the question of whether existing migration approaches in the analysis phase fit the specific requirements of SMEs. Using a literature review methodology, we first identify and analyze determinant factors for cloud adoption in SMEs. On this basis, we analyze existing methods in the analysis phase for migrations from on-premise software to cloud solutions. We investigate whether these factors are considered in the analysis phase of the approaches and conclude their suitability for SMEs. Of the migration approaches we examined, none included all the factors we identified as relevant to SMEs. Fewer have considered all factors fully and in detail. We present the results of the literature search process in tabular form and conclude this paper with a discussion and synthesis of the literature as well as an outlook on further research fields.
For most industries, Artificial Intelligence (AI) holds substantial potentials. In the last decades, the extent of data created worldwide is exponentially increasing, and this trend is likely to continue. However, despite the prospects, many companies are not yet using AI at all or not generating added value. Often, an AI project does not exceed its pilot phase and is not scaled up. The problems to create value from AI applications in companies are manifold, especially since AI itself is diverse and there is no ‘one size fits all’ approach. One often stated obstacle, why many AI projects fail, is a missing AI strategy. This leads to isolated solutions, which do not consider synergies, scalability and seldom result in added value for the company. To create a company-specific AI strategy with a top-down approach, a generic but holistic framework is needed. This paper proposes a strategic AI procedure model that enables companies to define a specific AI strategy for successfully implementing AI solutions. In addition, we demonstrate in this paper how we apply the introduced strategic AI procedure model on an AI-based flexible monitoring and regulation system for power distribution grid operators in the context of an ongoing research project.
Die Schwerpunktstudie untersucht, inwieweit die Potenziale von digitalen Technologien zur Steigerung der Energieeffizienz in der deutschen Wirtschaft bereits ausgeschöpft und die möglichen negativen Effekte schon heute durch gezielte Maßnahmen eingedämmt werden.
Die Teilstudien der vorliegenden Schwerpunktstudie geben aufschlussreiche Einsichten zum aktuellen Stand der Forschung und zum Einsatz digitaler Maßnahmen zur Steigerung der Energieeffizienz der Unternehmen in der Informationswirtschaft und im Verarbeitenden Gewerbe.
Sowohl in der Forschung als auch in der Praxis zeigt sich, dass die Datenverfügbarkeit und -verarbeitung eine zentrale Hürde darstellt, um die Potenziale digitaler Technologien im Energiebereich realisieren zu können. Somit ist die Verbesserung der Erfassung, Integration, Verarbeitung und des Schutzes von Energiedaten ein zentrales Handlungsfeld und elementare Voraussetzung für die erfolgreiche Planung potenzieller Maßnahmen und deren Evaluierung im Laufe der Umsetzung, sowohl für die Politik als auch Unternehmen.
Wie gesetzliche Zielvorgaben zudem Anreize für Unternehmen setzen, neue Lösungsansätze zu finden und künftig vermehrt in energieeffizienzsteigernde Maßnahmen zu investieren, lesen Sie in der Studie.
Die vernetzte Digitalisierung als Befähiger für Intelligente Produkte und datenbasierte Geschäftsmodelle stellt Unternehmen vor zahlreiche und vielfältige Herausforderungen auf dem Weg durch die digitale Transformation. Zur Unterstützung dieser Unternehmen wurden in den vergangenen Jahren diverse Referenzarchitekturmodelle entwickelt. Eine detaillierte Analyse derselben und insbesondere ihrer Nutzung durch Unternehmen zeigte schnell, dass aktuell bestehende Referenzmodelle große Schwächen in der Praxistauglichkeit aufweisen. Mit dem Aachener Digital-Architecture-Management (ADAM) wurde ein Framework entwickelt, das gezielt die Schwächen bestehender Referenzarchitekturen adressiert und ihre Stärken gezielt aufnimmt. Als holistisches Modell, speziell für die Anwendung durch Unternehmen entwickelt, strukturiert ADAM die digitale Transformation von Unternehmen in den Bereichen der digitalen Infrastruktur und der Geschäftsentwicklung ausgehend von den Kundenanforderungen. Systematisch werden Unternehmen dazu befähigt, die Gestaltung der Digitalarchitektur unter Berücksichtigung von Gestaltungsfeldern voranzutreiben. Die Beschreibung der Gestaltungsfelder bietet einen detaillierten Einblick in die wesentlichen Aufgaben auf dem Weg zu einem digital vernetzten Unternehmen. Dabei stellt das Modell nicht nur eine Strukturierungshilfe dar, sondern beinhaltet mit den Gestaltungsfeldern einen Baukasten, um das Vorgehen in der digitalen Transformation zu konfigurieren. Das Vorgehen differenziert zwischen der Entwicklung der Digitalisierungsstrategie und der Umsetzung der Digitalarchitektur. Drei unterschiedliche Case-Studys zeigen zudem auf, wie ADAM in der Industrie konkret genutzt, welche Strukturierungshilfe es leisten und wie die digitale Transformation konfiguriert werden kann. Durch die Breite und Tiefe von ADAM werden Unternehmen befähigt, den Weg der digitalen Transformation systematisch und strukturiert zu bestreiten, ohne die wertschöpfenden Bestandteile der Digitalisierung außer Acht zu lassen. Dies qualifiziert ADAM zu einem nachhaltigkeitsorientierten Framework, da es die wirtschaftliche Skalierung, die bedarfsgerechte Anpassung und die zukunftsgerichtete Robustheit von Lösungsbausteinen in den Fokus der digitalen Transformation rückt.