Florian Clemens
Refine
Document Type
- Contribution to a Periodical (5)
- Conference Proceeding (3)
- Book (2)
- Part of a Book (2)
- Working Paper (1)
Language
- German (7)
- English (4)
- Multiple languages (2)
Is part of the Bibliography
- no (13)
Keywords
- Digitalisierung (3)
- Künstliche Intelligenz (3)
- ADAM (2)
- Industrie 4.0 (2)
- artificial intelligence (2)
- rev (2)
- ADM-Systeme (1)
- AI (1)
- Data Literacy (1)
- Datenkompetenz (1)
Institute
The adoption of artificial intelligence (AI) technologies in manufacturing companies is challenging, particularly for SMEs that lack the necessary skills to develop and integrate AI-based applications (AI applications) into their existing IT system landscape. To address this challenge, the research project VoBAKI (IGF-Project No.: 22009 N) aims to enable SMEs to identify and close skill gaps related to AI application development and implementation using proper sourcing strategies. This paper presents the interim results from the second phase of the project, which involves identifying the tasks in the lifecycle of AI applications and determining the specific skills required for executing these tasks. The presented results provide a detailed lifecycle including the phases for the development and usage of AI applications, as well as the specific tasks that SMEs must consider when implementing an AI application. These results serve as the foundation for future research regarding the required skills to execute the presented tasks and provide a roadmap for SMEs to close skill gaps and successfully implement AI applications.
Im Rahmen des Forschungsprojekts ‚VoBAKI‘ werden die Umsetzung und der Betrieb von Anwendungen der Künstlichen Intelligenz über deren gesamten Lebenszyklus in produzierenden Unternehmen betrachtet. Zu Beginn des Projekts wurden Unternehmensziele identifiziert, die mit dem Einsatz von Künstlicher Intelligenz verfolgt und erreicht werden können. In diesem Artikel werden das Projekt sowie die identifizierten Ziele vorgestellt und der weitere Verlauf des Projekts skizziert.
Die digitale Transformation in Unternehmen bewirkt einen stetigen Anstieg der Datenmengen auf allen Unternehmensebenen. Die Nutzung dieser Daten und deren Veredlung zu Informationen gestalten sich aufgrund der historisch gewachsenen IT-Komplexität jedoch zunehmend als strukturelle und organisatorische Herausforderung. Das Potenzial der digitalen Transformation, schnellere und bessere Entscheidungen auf Basis von Analysen der vorliegenden Datenbasis zu treffen, bleibt damit oftmals hinter den Erwartungen zurück. Unternehmen sind daher gefordert, Strukturen und Fähigkeiten zur Beherrschung der Ressource Information zu gestalten. Die Informationslogistik stellt einen essenziellen Baustein dar, um interne und externe Informationsflüsse effektiv und effizient nutzbar zu machen.
In diesem Kapitel werden die Begriffe und Grundlagen des Informationsmanagements (IM) erläutert. Zunächst werden die Begriffe „Daten“ und „Information“ erläutert und voneinander abgegrenzt. Darauffolgend werden die Begriffe „Informationssystem“ und „Informationstechnologie“ erläutert. Zudem wird der Begriff „Informationsmanagement“ definiert und dessen Aufgaben im Unternehmenskontext eingeordnet. Abschließend wird der Begriff des IT-Business-Alignments eingeführt und dessen Notwendigkeit im Unternehmenskontext hergeleitet.
Technologiemanagement – die Basis für die Entscheidung über Einsatz, Entwicklung oder Beschaffung sowie die Verwertung von Technologien – kann strategische Entscheidungen eines Unternehmens maßgeblich beeinflussen und damit über dessen Erfolg oder Misserfolg entscheiden. Grundlegende Vorlage für das Technologiemanagement sind Technologieradare, inklusive der Bestimmung des (TRL), um die Reife neu eingesetzter Technologien (z. B. Newcomer vs. Etablierte) bewerten zu können. Sowohl Technologieradare als auch der TRL werden in zeitaufwendigen, manuellen Recherchen von Fachleuten ermittelt. Dieser Prozess wird aufgrund der Weiter- und Neuentwicklung von Technologien häufig wiederholt, sodass die notwendige Recherche als Daueraufgabe bestehen bleibt. Das Forschungsprojekt ‚TechRad‘ (Laufzeit: 01.06.2019 – 31.05.2022) zielt deshalb darauf ab, die Identifikation des TRLs sowie den Aufbau der Technologie-Radare mittels Webcrawling und Natural-Language-Processing (NLP) zu automatisieren. Im Artikel werden die Erkenntnisse aus der Entwicklung in Form eines generischen Leitfadens zur Entwicklung autonomer Technologieradare zusammengefasst.
Networked digitalisation as an enabler for smart products and data-based business models presents companies with numerous and diverse challenges on their way through the digital transformation. Various reference architecture models have been developed in recent years to support these companies. A detailed analysis of these and in particular their use by companies quickly showed that currently existing reference models have major weaknesses in their practical suitability. With the Aachen Digital Architecture Management (ADAM), a framework was developed that specifically addresses the weaknesses of existing reference architectures and specifically takes up their strengths. As a holistic model, specially developed for use by companies, ADAM structures the digital transformation of companies in the areas of digital infrastructure and business development starting from customer requirements. Systematically, companies are enabled to drive the design of the digital architecture, taking into account design fields. The description of the design fields offers a detailed insight into the essential tasks on the way to a digitally networked company. The model is not only a structuring aid, but also contains a construction kit with the design fields to configure the procedure in the digital transformation. The procedure differentiates between the development of the digitalisation strategy and the implementation of the digital architecture. Three different case studies also show how ADAM is used in industry, what structuring support it can provide and how the digital transformation can be configured. The breadth and depth of ADAM enable companies to take the path of digital transformation systematically and in a structured manner, without ignoring the value-creating components of digitalisation. This qualifies ADAM as a sustainability-oriented framework, as it places the economic scaling, needs-based adaptation and future-oriented robustness of solution modules in the focus of digital transformation.
Die vernetzte Digitalisierung als Befähiger für Intelligente Produkte und datenbasierte Geschäftsmodelle stellt Unternehmen vor zahlreiche und vielfältige Herausforderungen auf dem Weg durch die digitale Transformation. Zur Unterstützung dieser Unternehmen wurden in den vergangenen Jahren diverse Referenzarchitekturmodelle entwickelt. Eine detaillierte Analyse derselben und insbesondere ihrer Nutzung durch Unternehmen zeigt schnell, dass aktuell bestehende Referenzmodelle große Schwächen in der Anwendung und somit in der Praxistauglichkeit aufweisen. Mit dem Aachener Digital-Architecture-Management (ADAM) wurde ein Modell entwickelt, das gezielt die Schwächen bestehender Referenzarchitekturen adressiert, ohne ihre Stärken zu vernachlässigen. Als holistisches Modell, speziell für die Anwendung durch Unternehmen entwickelt, strukturiert das ADAM-Modell die digitale Transformation von Unternehmen in den Bereichen der digitalen Infrastruktur und der Geschäftsentwicklung. Systematisch werden Unternehmen dazu befähigt, die Gestaltung der Digitalarchitektur unter Berücksichtigung von Gestaltungsfeldern voranzutreiben. Dabei bietet das Modell nicht nur eine Strukturierungshilfe, sondern beinhaltet auch einen Baukasten, um das Vorgehen in der digitalen Transformation zu konfigurieren. Durch die Breite und Tiefe von ADAM werden Unternehmen befähigt, den Weg durch die digitale Transformation systematisch und strukturiert zu bestreiten, ohne die wertschöpfenden Bestandteile der Digitalisierung aus den Augen zu verlieren.
Technology management can significantly influence the strategic decisions of a company and thus cause success or failure. Basic templates for technology management are technology radars as well as the determination of the technology readiness level (TRL) to be able to evaluate the maturity of newly deployed technologies (e.g., newcomer vs. established). The radars, as well as the TRL, are identified in time-consuming, manual research by subject matter experts from external consultancies. This process is often repeated due to the further development and new development of technologies so that the necessary research becomes an ongoing task. The TechRad research project, therefore, aims to automate the identification of the TRL as well as technology radars using web crawling and Natural Language Processing (NLP). To commercialize the pre-competitive prototype, the development of a pre-competitive business model is the goal of this paper. Based on customer analyses, a target group definition is created. Based on user interviews, the precompetitive business model will be detailed in a four-step approach using a business model canvas and a value proposition canvas.
The operation of CNC milling is expensive because of the cost-intensive use of cutting tools. The wear and tear of CNC tools influence the tool lifetime. Today’s machines are not capable of accurately estimating the tool abrasion during the machining process. Therefore, manufacturers rely on reactive maintenance, a tool
change after breakage, or a preventive maintenance approach, a tool change according to predefined tool specifications. In either case, maintenance costs are high due to a loss of machine utilization or premature tool change. To find the optimal point of tool change, it is necessary to monitor CNC process parameters during machining and use advanced data analytics to predict the tool abrasion. However, data science expertise is limited in small-medium sized manufacturing companies. The long operating life of machines often does not justify investments in new machines before the end of operating life. The publication describes a cost-efficient approach to upgrade legacy CNC machines with a Tool Wear Prediction Upgrade Kit. A practical solution is presented with a holistic hardware/software setup, including edge device, and multiple sensors. The prediction of tool wear is based on machine learning. The user interface visualizes the machine condition for the maintenance personnel in the shop floor. The approach is conceptualized and discussed based on industry requirements. Future work is outlined.