Wolfgang Boos
Refine
Document Type
- Article (5)
- Conference Proceeding (7)
- Preprint (1)
- Working Paper (1)
Is part of the Bibliography
- no (14)
Keywords
- 01 (2)
- 02 (4)
- 03 (8)
- 5G (1)
- AI (1)
- Aachener PPS-Modell (1)
- Additive Fertigung (1)
- Additive manufacturing (1)
- Anomaly detection (1)
- Artificial intelligence (1)
Institute
Die notwendige Transformation der Linear- zur Kreislaufwirtschaft ermöglicht die Entkopplung des Wirtschaftswachstums und Ressourcenverbrauchs. Das ökonomische und ökologische Potenzial der Kreislaufwirtschaft wird durch die zeitgleiche Umsetzung mehrere, simultaner Kreislaufstrategien gesteigert. Diese Umsetzungsform bedingt allerdings vielfältige und komplexe Entscheidungen für die operative Abwicklung. Das entwickelte kaskadierte Entscheidungsmodell differenziert diese Entscheidungen innerhalb verschiedener Ebenen des Wertschöpfungssystems.
Die hohen Investitionskosten im Maschinenpark bei metallischer
additiver Fertigung (mAM) führen zur Vergabe von Fertigungsaufträgen
an Auftragsfertiger. Dadurch ist die Bündelung mehrerer Kundenaufträge
in einem Fertigungsauftrag bei den langen Produktionszeiten bei
mAM besonders vorteilhaft. Es fehlt jedoch ein Auftragsabwicklungsmodell, das die Besonderheiten der mAM berücksichtigt. In diesem Beitrag werden die Anforderungen der mAM an die Auftragsabwicklung anhand des Aachener PPS-Referenzmodells untersucht und Prozessänderungen vorgestellt.
Information-based Integration of Life Cycle Assessment into IT Landscapes of Manufacturing Companies
(2024)
Life Cycle Assessment (LCA) is one of the fundamental methods to facilitate effective decisions in sustainability transformation. However, the current implementation of LCA is inefficient due to detached software applications and manual data imports. Utilizing data from existing information systems offers the potential for a significant increase in efficiency. Existing approaches focus on prototypical implementations with a high level of detail but low transferability, or approaches only consider integration at the system level, whereby practical applicability is reduced. Therefore, this paper presents an information-based framework for integrating LCA software into the existing IT landscape of manufacturing companies with focusing on generic functions and a detailed information flow. The generic approach enables transferability, while the detailed information flows allow practical applicability.
The automotive industry's transition to electromobility, marked by the replacement of traditional combustion engines with electric drives, significantly disrupts the existing product range of many companies. This transition is especially impactful in Germany, a major automotive hub employing about 786,000 people in 2021, where it's projected that around 21 percent of these jobs could be at risk by 2030. Therefore, there is an urgent need for German automotive suppliers to adapt to the evolving electromobility landscape, further intensified by concurrent trends like digitalization, work changes and sustainability. A notable gap in the current literature is the absence of a comprehensive capability model for these suppliers to manage this transformation effectively. This research aims to close this gap by identifying the essential transformation capabilities and developing a capability model, emphasizing 30 key capabilities clustered into superordinate dimensions and structured along the fields of action of human, technology and organization, the MTO approach.
In recent times, both geopolitical challenges and the need to counteract climate change have led to an increase in generated renewable energy as well as an increased demand for clean electrical energy. The resulting variability of electricity production and demand as well as an overall demand increase, put additional stress on the existing grid infrastructure. This leads to strongly increased maintenance demands for distribution system operators (DSOs). Today, condition monitoring is used to address these challenges. Researchers have already explored solutions for monitoring critical assets like switchgear and circuit breakers. However, with a shrinking knowledgeable technical workforce and increasing maintenance requirements, mere monitoring is insufficient. Already today, DSOs ask for actionable recommendations, optimization strategies, and prioritization methods to manage the growing task backlog effectively. In this paper we propose a vision of a grid-level cognitive assistance system that translates the outcome of diagnosis and prognosis systems into actionable work tasks for the grid operator. The solution is highly interdisciplinary and based on empirical studies of real-world requirements. We also describe the related work relevant to the multi-disciplinary aspects and summarize the research gaps that need to be closed over the next years.
In diesem Expert-Paper stellen wir Ihnen den SolutiKo-Ordnungsrahmen vor, der Unternehmen wie ein Kompass auf dem Weg vom Produkt- zum Lösungsanbieter unterstützen soll. Als Orientierungspunkt im Projekt SolutiKo bietet das Paper eine thematische Einführung sowie einen Überblick über die Themen, die im Projekt adressiert werden. Das Expert-Paper richtet sich an Führungskräfte und Mitarbeitende in Unternehmen, die das Lösungsgeschäft aufbauen und optimieren wollen.
Reinforced through the pandemic and shaped by digitalization, today's professional working environment is in a state of transformation. Working remotely has become a vital component of many professions' regular routines. The design of remote work environments presents challenges to organizations of all sizes. By providing a classification, this paper reveals a comprehensive understanding of the fields of design to be considered to establish lasting remote work concepts in organizations. A hierarchical classification with four dimensions consisting of human, technology, organization, and culture, seven design elements and, twenty design parameters indicates to organizations the fields of design that need to be examined. To satisfy both the theoretical foundation and the practical application, design elements are derived by implementing a systematic review of the literature that represents key areas of interest for remote work. Additionally, these are verified and complemented by a dedicated case study research to incorporate practice-oriented design parameters.
Die pandemiebedingt angestiegene Homeofficequote in produzierenden
Unternehmen ist seit Juli 2020 deutlich rückläufig und indiziert ein
geringes Maß an langfristig gestalteten hybriden Arbeitsplatzkonzepten.
Angesichts des Fachkräftemangels besteht Handlungsdruck, eine
attraktive Arbeitsumgebung mit industriellen Tätigkeiten zu vereinbaren.
Um zukunftsorientierte Arbeitsplatzkonzepte zu gestalten, nennt
das vorgestellte Vorgehen systematisch die menschlichen Tätigkeiten
in produzierenden Unternehmen und bewertet deren Remotefähigkeit.
The agricultural industry is facing unprecedented challenges in meeting the growing demand for food while minimizing its impact on the environment. To address these challenges, the industry is embracing technological advancements such as 5G networks to improve efficiency and productivity. However, the benefits of 5G technology must be weighed against the costs of implementing a suitable network. This paper presents cost-benefit dimensions that are needed to assess the economic feasibility of implementing 5G networks for several agricultural applications. The paper describes the costs of deploying and maintaining a 5G network and the benefits of several 5G-specific use cases, including precision agriculture, livestock monitoring, and swarm robotics. Using industry reports and case studies, the model quantifies the benefits of 5G networks, such as enabling new digital agricultural processes, increased productivity, and improved sustainability. It also considers the costs associated with equipment and infrastructure, as well as the challenges of deploying a network in rural areas. The results demonstrate that 5G networks can provide significant benefits to agricultural businesses and provide an overview about the cost factors. Both benefit and cost dimensions are analyzed for the 5G-specific agricultural use cases.
Companies in the manufacturing sector are confronted with an increasingly dynamic environment. Thus, corporate processes and, consequently, the supporting IT landscape must change. This need is not yet fully met in the development of information systems. While best-of-breed approaches are available, monolithic systems that no longer meet the manufacturing industry's requirements are still prevalent in practical use. A modular structure of IT landscapes could combine the advantages of individual and standard information systems and meet the need for adaptability. At present, however, there is no established standard for the modular design of IT landscapes in the field of manufacturing companies' information systems. This paper presents different ways of the modular design of IT landscapes and information systems and analyzes their objects of modularization. For this purpose, a systematic literature research is carried out in the subject area of software and modularization. Starting from the V-model as a reference model, a framework for different levels of modularization was developed by identifying that most scientific approaches carry out modularization at the data structure-based and source code-based levels. Only a few sources address the consideration of modularization at the level of the software environment-based and software function-based level. In particular, no domain-specific application of these levels of modularization, e.g., for manufacturing, was identified. (Literature base: https://epub.fir.de/frontdoor/index/index/docId/2704)