Das Branchenbild der deutschen Steine- und Erdenindustrie (S&E-Industrie) wird von kleinen und mittleren Unternehmen (KMU) dominiert. Als Rückgrat der deutschen Industrie sehen sich die KMU der S&E-Industrie mit komplexen Herausforderungen, insbesondere hinsichtlich der Digitalisierung, konfrontiert. Daraus folgt, dass eine Vielzahl an Risikobarrieren und Hemmschwellen zu einer Einschränkung in der Anpassung an neue Technologien führt und die damit verbundene Ausweitung der Digitalisierung innerhalb der Branche ausbleibt. Die Implementierung aktueller Soft- und Hardwarelösungen erzeugt bislang ein erhöhtes Maß an Mehraufwand, welches aufgrund begrenzter Ressourcen, insbesondere für kleine Betriebe, parallel zum Tagesgeschäft kaum zu bewältigen ist. Darüber hinaus herrscht oftmals ein unzureichendes Datenmanagement vor, welches neben den bisher nicht ausreichend differenziert betrachteten Nachfrageschwankungen zu einer Minderung der Prognostizierbarkeit in S&E-Betrieben führt. Resultierend aus diesen Defiziten ist die betriebsinterne Optimierung der Auslastung nur bedingt möglich. Zudem können andere Betriebe des Unternehmensverbunds zur Verfügung stehende ungenutzte Kapazitäten nicht erkennen. Im Rahmen des Forschungsprojekts 'PROmining' konnte über qualitative Expertengespräche ebenfalls identifiziert werden, dass eine differenzierte, also unternehmensspezifische Art der Erfassung, Speicherung und Nutzung von Daten vorliegt. Es ist folglich keine einheitliche Struktur in der Handhabung von Daten in der Branche festzumachen. Dadurch findet die Analyse von vorhandenen Zustandsdaten häufig nicht statt und die Potenziale der Digitalisierung finden keinen Eingang in die Unternehmensprozesse. Die betriebsinterne Optimierung von Prozessschritten und der Auslastung ist infolge unzureichenden Datenmanagements aktuell nur bedingt möglich. Daher bedarf es Filterung und konkretisierter Bündelung der Daten, um eine zielführende Auswertung und darauffolgende Umsetzung zu initiieren.