Future Data Assets
Refine
Document Type
- Part of a Book (1)
- Conference Proceeding (3)
- Contribution to a Periodical (3)
- Report (1)
Language
- German (3)
- English (3)
- Multiple languages (2)
Is part of the Bibliography
- no (8)
Keywords
- 01 (1)
- 02 (1)
- Big Data (2)
- Data analytics (1)
- Data-Analytics (2)
- Datenbewertung (1)
- Datenbewirtschaftung (1)
- Datenbilanz (1)
- Datengetriebene Geschäftsmodelle (1)
- Datenkapital (2)
Institute
Das Ziel des Forschungsprojekts "Future Data Assets" bestand in der monetären Bewertung des unternehmerischen Datenkapitals. Dazu wurden die Entwicklung und Instanziierung einer sogenannten "Datenbilanz" angestrebt. Die Datenbilanz soll dem Reporting der unternehmerischen Fähigkeit der Datenbewirtschaftung dienen und damit eine Lücke im Hinblick auf die klassische Berichterstattung schließen, in der Daten kaum betrachtet bzw. systematisch bewertet werden.
ZusammenfassungDieser Beitrag stellt dar, welche Chancen und Herausforderungen mit der Bewertung von Daten sowie der Abbildung monetärer Datenwerte verbunden sind und geht auf mögliche Lösungsansätze zur Bewertung von Unternehmensdatenbeständen, insbesondere im Kontext der industriellen Produktion, ein. Zunächst werden Grundlagen zur Charakterisierung, Nutzung und Verwertung von Daten sowie bestehende Methoden zur Bewertung von immateriellen Vermögensgegenständen dargestellt. Darauf aufbauend werden Chancen und Herausforderungen spezifiziert, potenzielle Lösungsansätze zur Datenbewertung abgeleitet und anschließend Anforderungen für die Datenbewertung beschrieben sowie die nutzenorientierte Datenbewertung skizziert.
Towards a Methodology to Determine Intersubjective Data Values in Industrial Business Activities
(2021)
This paper contributes to a valuation framework for valuing data as an intangible asset. Especially those industrial manufacturers developing and delivering holistic digital solutions are limited in calculating the true business value of data initiatives. Since the value of data is strongly dependent on the respective use case, a completely objective valuation is not possible. This complicates decision-making on the internal side regarding investments in digital transformation, and on the external side to communicate existing benefits to third parties via financial reporting. Therefore, the target is to design a valuation framework that allows industrial manufacturers to determine an intersubjective, i.e., traceable and transparent, data value. In order to develop a framework that can be applied in practice, the approach is based on industrial case study research.
„If you can’t measure it, you can’t manage it.“ Peter Druckers berühmte Weisheit ist in Zeiten des digitalen Wandels aktueller denn je. Der Unternehmenswert der weltweit wertvollsten Unternehmen, wie beispielsweise Google, Amazon, Alphabet und Microsoft, ergibt sich zum größten Teil nicht durch physische Vermögenswerte, sondern durch informationstechnische Dienste und datengetriebene Geschäftsmodelle. Der Zugriff und die Nutzung von Daten sind zunehmend ein wettbewerbsentscheidender Schlüsselfaktor und begründen die Notwendigkeit zur digitalen Transformation etablierter Geschäftsmodelle und -prozesse, nicht zuletzt innerhalb der produzierenden Industrie in Deutschland und Europa. Das vom Bundesministerium für Wirtschaft und Klimaschutz geförderte Forschungsprojekt ‚Future Data Assets', Laufzeit 01.08.2019 – 31.01.2023, diente folgerichtig dem Ziel, zunächst neue Möglichkeiten der Datenbewertung, insbesondere im Bereich des monetären Nutzens, und daran anschließend Kanäle zur Kommunikation der ermittelten Werte zu erforschen.
This paper contributes to an assessment framework for valuing data as an asset. Particularly industrial manufacturers developing and delivering Smart Product Service Systems (Smart PSS) are comprehensively depended on the business value derived by processing data. However, there is a lack in a framework for capturing and comparing the Smart PSS data value with the purpose of increasing the accountability of data initiatives. Therefore a qualitative data value assessment approach was developed and specified on Smart PSS, based on an industrial case study research. [https://link.springer.com/chapter/10.1007/978-3-030-57997-5_39]
Since data becomes more and more important in industrial context, the question arises on how data-driven added value can be measured consistently and comprehensively by manufacturing companies. Currently, attempts on data valuation are primarily taking place on internal company level and qualitative scale. This leads to inconclusive results and unused opportunities in data monetization. Existing approaches in theory to determine quantitative data value are seldom used and less sophisticated. Although quantitative valuation frameworks could enable entities to transfer data valuation from an internal to an external level to take account of progress in digital transformation into external reporting. This paper contributes to data value assessment by presenting a four-part valuation framework that specifies how to transfer internal, qualitative to external, quantitative data valuation. The proposed framework builds on insights derived from practice-oriented action research. The framework is finally tested with a machine tool manufacturer using a single case study approach. Placing value on data will contribute to management’s capability to manage data as well as to realize data-driven benefits and revenue. [https://link.springer.com/chapter/10.1007/978-3-030-85902-2_19]
In der Spitzengruppe der weltweit wertvollsten Unternehmen befinden sich Stand 20211 hauptsächlich Digitalkonzerne wie Apple, Amazon, Alphabet, Microsoft, Facebook und Tencent. Im Gegensatz zu traditionellen Industrieunternehmen bestimmt sich der größte Anteil des Unternehmens- bzw. Börsenwerts dieser Konzerne nicht durch physische Assets, sondern durch den immateriellen Wert vorhandener Daten, Informationen und informationstechnischer Dienste.
Der Zugriff auf und die Nutzung von Daten sind zunehmend wettbewerbsentscheidende Schlüsselfaktoren und begründen die Notwendigkeit zur digitalen Transformation etablierter Geschäftsmodelle und -prozesse auch innerhalb der produzierenden Industrie in Deutschland und Europa. Das vom Bundesministerium für Wirtschaft und Klimaschutz geförderte Projekt ‚Future Data Assets“ dient folgerichtig dem Ziel, zunächst neue Möglichkeiten der Datenbe-
wertung, insbesondere im Bereich des monetären Nutzens, und daran anschließend Kanäle zur Kommunikation der ermittelten Werte zu erforschen. Im Fokus der Untersuchungen stehen insbesondere produzierende Unternehmen, die im Kontext von Industrie 4.0 zunehmend Daten wertschöpfend einsetzen, jedoch vor zahlreichen Herausforderungen in der externen und internen Kommunikation des Nutzwertes ihres Datenkapitals stehen.
Projekt ‚Future Data Assets‘: Reporting der unternehmerischen Fähigkeit der Datenbewirtschaftung
(2020)
„Daten sind das neue Öl.“ Ein vielfach genutzter Ausdruck, der die Relevanz und den Wert von Daten im digi- talen Zeitalter unterstreicht. Allerdings existiert derzeit noch kein standardisiertes Verfahren, um den Wert von Daten explizit zu bemessen. Traditionelle marktpreis-, kosten- und nutzenbasierte Bewertungsmethoden kommen bei der Anwendung im Datenkontext schnell an ihre Grenzen. Das Forschungsprojekt ‚Future Data Assets‘ hat zum Ziel, neue Möglichkeiten der Datenbewertung zu erforschen. Im Fokus der Untersuchungen stehen insbesondere produzierende Unternehmen, die zunehmend Daten wertschöpfend einsetzen, jedoch vor zahlreichen Herausforderungen in der externen und internen Kommunikation ihres Datenkapitals stehen. Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Wirtschaft und Energie unter dem Förderkennzeichen 01MD19010B gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt beim Autor.