Sijmen Boersma
Refine
Year of publication
- 2023 (2)
Document Type
Language
- English (2)
Is part of the Bibliography
- no (2)
Keywords
- 02 (1)
- 03 (1)
- Carrier (1)
- Freight forwarder (1)
- Relay traffic (1)
- Route sectioning algorithm (1)
- Transport order (1)
- artificial intelligence (1)
- benefit measurement (1)
- crisis (1)
Institute
Crisis situations can lead to extreme consequences for society and the economy, such as the disruption of supply chains and the collapse of critical infrastructure. The challenge for optimal crisis preparation lies in the unpredictability of causes, duration and scope, and severity. AI-based resilience services can aid in crisis preparation by providing software-based warnings, recommendations, and countermeasures. The aim of this paper is to present a method for evaluating such services in terms of their usefulness and acceptance. A questionnaire is presented, and the results of its piloting phase are disseminated. With these results, existing and projected AI-based services for crisis prevention can be evaluated.
In road haulage, transports are interrupted by truck drivers to comply with driving and rest times. On long-distance routes, these interruptions lead to a considerable increase in transport time. Transport interruption can be avoided by so-called relay traffic: a vehicle (e. g. semi-trailer) is handed over to a rested driver at the end of the driving time. This type of transport requires a certain company size. In Germany, however, transport companies have 11 employees on average. Intra-company relay traffic is therefore not economically viable for most transport companies. To organize an intermodal transport across forwarding companies, long-distance routes need to be split into partial routes to divide them between freight forwarders and carriers. This paper presents a data concept for an algorithm to find the best possible route sections along a previously defined start and endpoint. The developed data concept includes order-specific data, forwarder-specific data, real-time traffic data, geographical data as well as data from freight forwarding software and telematics to be the basis for the route sectioning algorithm. In this paper, different data sources, external services and logistic systems are analyzed and evaluated. It is shown which data is needed and what the best ways are to select and derive this data from the different data sources.