Volker Stich
Refine
Year of publication
Document Type
- Article (8)
- Book (7)
- Part of a Book (19)
- Conference Proceeding (47)
- Contribution to a Periodical (13)
- Doctoral Thesis (2)
- Lecture (2)
- Internet Paper (4)
- Preprint (1)
- Report (1)
Language
- German (62)
- English (52)
- Multiple languages (2)
Is part of the Bibliography
- no (116)
Keywords
- 02 (1)
- 03 (1)
- 3GPP (1)
- 5G (5)
- 5G mobile communication (2)
- 5G-Mobilfunk (1)
- ADAM (1)
- Abschlussbericht (1)
- Additive Fertigung (1)
- Adherence To Delivery Dates (1)
Institute
Datenbasierte Services rücken durch die Vernetzung zunehmend in den Fokus von Unternehmen. Für produzierende Unternehmen jeder Größe ist es immanent, die eigenen Daten stärker zu nutzen. Durch ein historisches Wachstum des Unternehmens sind IT-Lösungen oftmals über das Unternehmen verteilt und Daten werden mehrfach gehalten. Mithilfe des Konzepts eines digitalen Schattens können die aufgezeigten Herausforderungen gelöst werden. Dessen Umsetzung erfolgt über software-definierte Plattformen. Diese ermöglichen ein Abbild der relevanten Unternehmensdaten und schaffen Transparenz über aktuelle und vergangene Ereignisse. Unter Nutzung von Datenanalyseverfahren und Visualisierungssystemen tragen sie zur Entscheidungsunterstützung im Unternehmen bei. Dieser Beitrag enthält eine Definition dieses Plattformtyps und eine Morphologie zur Einordnung verschiedener Plattformen vor. Anhand des morphologischen Kastens werden die zentralen, notwendigen Merkmale einer software-definierten Plattform herausgearbeitet und beschrieben. Integrationsanforderungen zur Einführung in Unternehmen werden in den vier Dimensionen Technik, Organisation, Prozesse sowie Anforderungen zur Datenintegration dargestellt.
Ergänzt wird diese Betrachtung um Praxiserfahrungen bei der Umsetzung einer software-definierten Plattform. Damit liefert der Artikel einen Beitrag zur Diskussion um software-definierte Plattformen und unterstützt Unternehmen bei der Einführung einer solchen.
Failure management in the production area has been intensely analyzed in the research community. Although several efficient methods have been developed and partially successfully implemented, producing companies still face a lot of challenges. The resulting main question is how manufacturers can be assisted by a sustainable approach enabling them to proactively detect and prevent failures before they occur. A high-resolution production system based on analyzed real-time data enables manufacturers to find an answer to the main question. In this context, Big Data technologies have gained importance since the critical success factor is not only to collect real-time data in the production but also to structure the data. Therefore, we present in this paper the implementation of Big Data technologies in the production area using the example of an actual research project. After the literature review, we describe a Big Data based approach to prevent failures in the production area. This approach mainly includes a real-time capable platform including complex event processing algorithms to define appropriate improvement measures.
With big data-technologies on the rise, new fields of application appear in terms of analyzing data to find new relationships for improving process under-standing and stability. Manufacturing companies oftentimes cope with a high number of deviations but struggle to solve them with less effort. The research project BigPro aims to develop a methodology for implementing counter measures to disturbances and deviations derived from big data. This paper proposes a methodology for practitioners to assess predefined counter measures. It consists of a morphology with several criterions that can have a certain characteristic. Those are then combined with a weighting factor to assess the feasibility of the counter measure for prioritization.
Influenced by the high dynamic of the markets the optimization of supply chains gains more importance. However, analyzing different procurement strategies and the influence of various production parameters is difficult to achieve in industrial practice. Therefore, simulations of supply chains are used in order to improve the production process. The objective of this research is to evaluate different procurement strategies in a four-stage supply chain. Besides, this research aims to identify main influencing factors on the supply chain’s performance. The performance of the supply chain is measured by means of back orders (backlog). A scenario analysis of different customer demands and a Design of Experiments analysis enhance the significance of the simulation results.
Towards a Methodology to Determine Intersubjective Data Values in Industrial Business Activities
(2021)
This paper contributes to a valuation framework for valuing data as an intangible asset. Especially those industrial manufacturers developing and delivering holistic digital solutions are limited in calculating the true business value of data initiatives. Since the value of data is strongly dependent on the respective use case, a completely objective valuation is not possible. This complicates decision-making on the internal side regarding investments in digital transformation, and on the external side to communicate existing benefits to third parties via financial reporting. Therefore, the target is to design a valuation framework that allows industrial manufacturers to determine an intersubjective, i.e., traceable and transparent, data value. In order to develop a framework that can be applied in practice, the approach is based on industrial case study research.
Aufgrund kürzer werdender Produktzyklen und steigender Produktvielfalt werden produzierende Unternehmen mit einer zunehmenden Anzahl von Produktanläufen konfrontiert. Ziel aktueller Forschungsaktivitäten ist es daher, anlaufintensive Unternehmen zu befähigen, verlässliche Produktionsprogramme in kurzer Zeit zu erstellen. Lerneffekte sollen genutzt werden können ohne Diversifikationseffekte zu vernachlässigen. Zur Erreichung dieser Zielsetzung wird ein Modell für eine kybernetische PPP bei Produktanläufen entwickelt.
Die Verschärfung des Wettbewerbsumfelds produzierender Unternehmen und die als Antwort hierauf in den Fokus rückenden agilen Methoden vergrößern die Bedeutung einer effizienten Handhabung von Änderungsprozessen. Am Beispiel des Maschinen- und Anlagenbauers Ortlinghaus zeigt der Beitrag, dass eine Kombination aus ungeeigneten Änderungsprozessen und mangelhaftem IT-Support in der Praxis oft die schnelle und gleichzeitig qualitätsgesicherte Durchführung von Änderungsprozessen verhindert. Der Zielkonflikt aus geringem Zeitbedarf und hoher Prozessqualität lässt sich durch Anpassungen in der IT-Unterstützung reduzieren. Hierdurch können Erfolgsfaktoren für ein effizientes Änderungsmanagement gehoben und die Problemfelder der Workflowunterstützung, Informationsverteilung und Datenhandhabung verbessert werden. Zentrales Hindernis zur Adressierung der Erfolgsfaktoren stellt die aktuell zur Abwicklung von Change Requests genutzte Arbeitsumgebung dar. Der Beitrag präsentiert hierfür als zentralen Lösungsansatz die Internet of Production Infrastruktur. Das Potenzial der Internet of Production Infrastruktur im Kontext des Änderungsmanagements wird anhand von drei Anwendungsbeispielen verdeutlicht. Abschließend wird der Migrationspfad für Unternehmen bei der Einführung eines effizienten Änderungsmanagements aufgezeigt.
Ziel des Forschungsbereichs "Selbstoptimierende Produktionssysteme" ist es, sowohl technische als auch soziotechnische Produktionssysteme zu entwickeln, die durch Selbstoptimierung eine bessere Performance erreichen, als bei der Auslegung geplant und erwartet werden kann. Im Fokus steht die Steigerung der Produktivität in der Produktion direkt vor Ort. Bedeutend ist die dezentrale Entscheidungsfähigkeit der Mitarbeiter auf dem Shopfloor und in unterstützenden Bereichen, sowie der kognitiven und adaptiven Systeme und Netzwerke in der Produktion.
Die Erfüllung der klassischen Aufgaben der Produktionsplanung und -steuerung (PPS) wird aufgrund der dynamischen Anforderungsprofile, die es Unternehmen abfordern, sich strukturell und operativ kontinuierlich zu verändern, zunehmend schwieriger. Der Umgang mit Dynamik und Komplexität wird vom Störfall zum Normalfall.
Vor diesem Hintergrund wird ein innovativer Ansatz für eine Produktionsplanung und -regelung vorgestellt, der das Ziel verfolgt, die den Produktionssystemen inhärente Planungskomplexität beherrschbar zu machen.
Der Lösungsansatz basiert auf kybernetischen Strukturen, die den Beschränkungen der Wandlungs- und Lebensfähigkeit. Als grundlegender Teil des Ansatzes wird die Produktionsregelung unter Berücksichtigung des Echtzeitaspektes entworfen.