Entwicklung eines Datenmodells zur Erhöhung der Reaktionsfähigkeit von autonomen mobilen Robotern in flexiblen Produktionssystemen
- Kürzere Produktlebens- und Innovationszyklen sowie eine zunehmende Kreislaufwirtschaft stellen
Unternehmen vor die Herausforderung, ihre Produktionsprozesse schnell an die sich wandelnden
Anforderungen anzupassen. Entscheidend für die Umsetzung einer anpassungsfähigen Produktion ist
eine flexible Intralogistik. Dabei setzen Unternehmen zunehmend auf autonome mobile Roboter (AMR).
AMR navigieren selbstständig und können ihre Route an die Umgebungssituation anpassen, ohne einen
Fahrer zu benötigen. In der Praxis werden diese Vorteile jedoch selten genutzt, da AMR nicht hinreichend
in das Produktionssystem eingebunden sind. Die Schwierigkeit dabei liegt in der Generierung von
Transportaufträgen, die auf die Echtzeit-Lage im Produktionssystem angepasst sind und alle relevanten
Daten auf dem Shopfloor berücksichtigen, um so auf unvorhergesehene Veränderungen flexibel und
effizient zu reagieren.
Das Ziel dieser Arbeit ist die Entwicklung eines Datenmodells, welches die Einflüsse auf den Einsatz von
AMR in der Produktion umfasst und die Erstellung von echtzeitfähigen Transportaufträgen ermöglicht.
Dazu wird zunächst eine Literaturrecherche durchgeführt, um relevante Aspekte wie Datenquellen,
-senken, und -flüsse zu identifizieren. Anschließend werden deren Einflüsse auf echtzeitfähige
Transportaufträge mittels der Betrachtung generischer Use-Cases ermittelt und in einem Datenmodell
erfasst. Das entwickelte Modell soll in der DFA Demonstrationsfabrik Aachen Gmbhl validiert werden.
Die Ergebnisse dieser Arbeit sollen Unternehmen bei der effektiven Implementierung von AMR
unterstützen und als Mittel zur Erhöhung der Reaktionsfähigkeit moderner Produktionssysteme dienen